STABLE AND LABILE BASE CHANGE FOR U(2)

YUVAL Z. FLICKER

Let E/F be a quadratic extension of local or global fields of characteristic 0, and A_E , A the rings of adèles of E, F in the latter case. Denote by a bar or $\tilde{\sigma}$ the nontrivial element of the galois group $\operatorname{Gal}(E/F)$, and let G be the quasi-split form of GL(2) defined by the twisted galois action of $\operatorname{Gal}(\overline{F}/F)$ (\overline{F} is an algebraic closure of F) given by $\tau(g) = \tilde{\tau}(g)$ if the restriction of $\tilde{\tau}$ (in $\operatorname{Gal}(\overline{F}/F)$) to E is trivial, and $\tau(g) = w'\tilde{\tau}(g)^{-1}w^{-1}$ if $\tilde{\tau}$ restricts to $\tilde{\sigma}$ on E. Here $w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, 'g denotes the transpose of g, and $\tilde{\tau}$ acts by mapping the matrix $g = (g_{ij})$ ($1 \le i, j \le 2$) in $GL(2, \overline{F})$ (g_{ij} in \overline{F}) to the matrix $\tilde{\tau}(g) = (\tilde{\tau}(g_{ij}))$. Then G(E) = GL(2, E) and G(F) is the subgroup of σ -invariant g in G(E), where $\sigma(g) = w'\overline{g}^{-1}w^{-1}$.

If "upstairs" and "downstairs" refer to objects defined over E and F, the purpose of this work is to lift (*L*-packets $\{\pi\}$ of) admissible (locally) and automorphic (globally) representations π downstairs, to such representations π^E upstairs. The image consists of σ -invariant π^E , those with ${}^{\sigma}\pi^E \simeq \pi^E$ where ${}^{\sigma}\pi^E(g) = \pi^E(\sigma(g))$. Only one-half of the σ -invariant π^E are obtained by this lifting, in contrast with the base change theory of GL(n) [1,4], where all $\tilde{\sigma}$ -invariant π^E are obtained. More precisely, there are two distinct liftings λ and λ_1 which inject the set of one-dimensional or discrete series *L*-packets $\{\pi\}$ downstairs into the set of π^E ; the images of λ and λ_1 are disjoint and their union exhausts the set of σ -invariant representations π^E upstairs which are one-dimensional, discrete series or for which ${}^{\sigma}\pi^E$ is equivalent, but not equal, to π^E (globally and locally). The central character of a σ -invariant irreducible one-dimensional or discrete series local (or global) representation π^E is trival on F^{\times} (or the group A^{\times} of idèles of F), not only on NE^{\times} (or $E^{\times}NA_E^{\times}$).

To explain these results by means of the Langlands functoriality principle denote by G' the group $\operatorname{Res}_{E/F}G$ obtained from G by restricting scalars from E to F (thus $G'(F) \simeq G(E)$), and recall that the L-groups of G and G' are

$${}^{L}G = GL(2,\mathbb{C}) \rtimes W_{E/F}, \qquad {}^{L}G' = (GL(2,\mathbb{C}) \times GL(2,\mathbb{C})) \rtimes W_{E/F};$$

the Weil group $W_{E/F}$ (of $(z,\tau), z$ in E^{\times} or the idèle class group $E^{\times} \setminus A_E^{\times}, \tau$ in Gal(E/F)) acts through Gal(E/F) by

$$\sigma(g) = w'g^{-1}w^{-1}, \qquad \sigma((g,g')) = (\sigma(g'), \sigma(g)) \qquad (g,g' \text{ in } GL(2,\mathbb{C})).$$

Received January 27, 1982.