# ON AN EXAMPLE OF MANIN 

## DMITRI KANEVSKY

1. Introduction. Let $V$ be a cubic surface defined over a field $K$ and $V(K)$ the set of nonsingular points of $V$, where by "points" we mean geometric points with values in $K$.

We recall a few definitions and results of Manin [1].
1.1 Three points $x_{1}, x_{2}, x_{3} \in V(K)$ are said to be colinear if they lie on some straight line $L$ defined over $K$ and either $L \subset V$ or $L \cdot V=x_{1}+x_{2}+x_{3}$ is a cycle of intersection of $V$ with $L$.

Points $x_{1}, x_{2} \in V(K)$ are said to be in general position if $x_{1} \neq x_{2}$ the straight line $x_{1} x_{2}$ is not tangent to $V$ and does not lie on $V$.

A point $x \in V(K)$ is an Eckhardt point if, considered over the algebraic closure of $K$, the tangent plane to $V$ at $x$ intersects $V$ in a curve which decomposes into three straight lines all passing through $x$.

A point $x \in V(K)$ is a point of general type if there is no straight line on $V$ that passes through $x$.

An equivalence relation $A$ on $S \subset V(K)$ is said to be admissible if the following conditions hold:
(i) $\forall x_{1}, x_{2} \in S, \exists x_{3} \in S: x_{1}, x_{2}, x_{3}$ are collinear.
(ii) If $x_{1}, x_{2}, x_{3}$ and $y_{1}, y_{2}, y_{3} \in S$ are collinear, $x_{1} \sim y_{1} \bmod A$ and $x_{2} \sim y_{2}$ $\bmod A$, then $x_{3} \sim y_{3} \bmod A$.
The finest equivalence relation on $S$ satisfying (i) and (ii) is called universal equivalence.

Let $A$ be an admissible equivalence relation on $S$ and let $E=S / A$ denote the set of its equivalence classes. For any $X_{1}, X_{2} \in E$ there is a uniquely determined class $X_{3}=X_{1} \circ X_{2} \in E$ such that there exist collinear points $x_{1}, x_{2}, x_{3}$ with $x_{i} \in X_{i}$. Defining a new binary operation $X Y=U \circ(X \circ Y)$ where $U$ is a fixed class, one converts $E$ into a commutative Moufang loop (for brevity, we shall speak of CML $E$ ). If $S=V(K)$, then CML $E$ is the direct product of an abelian group of period 2 and a CML of period 3 (the latter is also an abelian group if it is of order at most 27).
1.2 Now let $K$ be either a finite extension of a $p$-adic number $Q_{p}$ or a field of formal power series with a finite field of residues; let $O$ be the ring of integers of

[^0]
[^0]:    Received December 23, 1981. This work was supported in part by a grant from the Israel Academy of Sciences and Humanities; Basic Research Foundation.

