SEMIGROUPS AND BOUNDARY VALUE PROBLEMS **KAZUAKI TAIRA**

Contents

Introduction				•	. 287
Statement of results			•		. 291
Preliminaries					. 295
Construction of Feller semigroups					. 298
Existence, uniqueness and regularity theorem for problem (*).		•		. 303
Fundamental a priori estimates	•				. 312
	Statement of results	Statement of results	Statement of results	Statement of results	Introduction

Introduction. Let D be a bounded domain in \mathbb{R}^N with smooth boundary ∂D and let $C(\overline{D})$ be the space of real-valued continuous functions on $\overline{D} = D \cup \partial D$.

A strongly continuous semigroup $\{T_t\}_{t\geq 0}$ of bounded linear operators on $C(\overline{D})$ is called a *Feller semigroup* on \overline{D} if $\{T_t\}$ satisfies the following condition:

$$f \in C(\overline{D}), \quad 0 \leq f \leq 1 \text{ on } \overline{D} \Rightarrow 0 \leq T_t f \leq 1 \text{ on } \overline{D}.$$

It is known (cf. [2], [5], [25]) that there corresponds to a Feller semigroup $\{T_i\}_{i\geq 0}$ on \overline{D} a strong Markov process \mathfrak{K} on \overline{D} whose transition function P(t, x, dy)satisfies

$$T_{t}f(x) = \int_{\overline{D}} P(t, x, dy)f(y), \quad f \in C(\overline{D})$$
(0.1)

and that, under certain continuity hypotheses concerning the transition function P(t, x, dy) such as

$$\lim_{t \downarrow 0} \frac{1}{t} \int_{|y-x| > \epsilon} P(t, x, dy) = 0 \quad \text{for all } \epsilon > 0 \quad \text{and} \quad x \in \overline{D}, \quad (0.2)$$

the infinitesimal generator \mathfrak{A} of $\{T_t\}_{t\geq 0}$ is described analytically as follows:

(i) Let x be a fixed point of the *interior* D of the domain. For a C^2 -function u in the domain $\mathfrak{D}(\mathfrak{A})$ of \mathfrak{A} , by expanding u(y) - u(x), we obtain from (0.1)

Received October 29, 1981. Author partially supported by NSF grant MCS 77-18723 A03.