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BIRATIONAL MORPHISMS OF SMOOTH
THREEFOLDS COLLAPSING THREE SURFACES TO

A POINT

BRUCE CRAUDER

This paper classifies proper birational morphisms of smooth threefolds
collapsing three smooth surfaces meeting normally to a point. In addition to
three blow-ups and Hironaka’s example of the blow-up of two plane curves, one
new nonprojective morphism, the wagon wheel, is found, which collapses two
smooth surfaces meeting normally to a plane curve with one ordinary singular
point. Neither of the surfaces is birationally equivalent to the blow-up of the
singular point. Elementary modifications of threefolds are defined and used to
describe both of the nonprojective morphisms. A number of formulae and facts
related to birational morphisms of threefolds and their factorizations are also
established.
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Introduction. The factorization question asks whether proper birational
mappings between smooth algebraic spaces over G may be written as
compositions of blow-ups and blow-downs with smooth centers. Hironaka’s
theorem on elimination of points of indeterminacy (Hironaka [5] and [6]) reduces
that question to that of proper birational morphisms. If f: X Y is a proper
birational morphism, let Sf be the subvariety of Y where f-t is not a morphism
and let Ef--f-t(Sf). By Zariski’s Main Theorem (Zariski [18] and van der
Waerden [16]), Ef is a divisor and Sf has codimension at least two. Thus for
curves, such morphisms are isomorphisms. For surfaces, such morphisms have
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