ON THE CHOW GROUPS OF CERTAIN RATIONAL SURFACES: A SEQUEL TO A PAPER OF S. BLOCH

JEAN-LOUIS COLLIOT-THÉLÈNE AND JEAN-JACQUES SANSUC

S. Bloch has recently applied the methods of algebraic K-theory to the study of 0 -dimensional cycles on rational surfaces, modulo rational equivalence. The best results are obtained for conic bundles over the projective line [1]. In this paper, building upon Bloch's very original ideas and upon some more or less classical facts pertaining to quadratic forms, we shall refine the results of [1], thereby answering some of the questions raised there.

Let k be a perfect field, \bar{k} an algebraic closure of k, and $\mathrm{g}=\operatorname{Gal}(\bar{k} / k)$. Let X be a rational, proper, smooth, geometrically integral variety over k. We denote the function field of X, resp. $\bar{X}=X \times{ }_{k} \bar{k}$, by $F=k(X)$, resp. $\bar{F}=\bar{k}(X)$. By the very definition of a rational variety, the latter field is purely transcendental over \bar{k}. Moreover, for such an X, the g -module $\operatorname{Pic} \bar{X}$ is a free Z -module of finite type: we can regard it as the character group \hat{S} of a k-torus S. Following [1] (as opposed to [2] or [4]) we denote by $A_{0}(X)$ the group of classes of degree nought 0 -dimensional cycles on X with respect to rational equivalence.

In section 1 of this paper, we define a "characteristic" homomorphism

$$
\Phi: A_{0}(X) \rightarrow H^{1}(k, S)
$$

and we show that its image is finite when k is any finitely generated extension of Q. This raises the question: what about the kernel of Φ ? Examples with $\operatorname{dim} X \geqslant 3$ suggest one should not expect a general answer, except in the case of surfaces.

In this last case, Bloch [1] has produced a K-theoretical interpretation of the kernel and the cokernel of Φ : starting from another definition of Φ, special to dimension 2, he constructs the basic exact sequence:

$$
\begin{equation*}
S(k) \rightarrow H^{1}\left(\mathfrak{g}, K_{2} \bar{F} / K_{2} \bar{k}\right) \rightarrow A_{0}(X) \xrightarrow{\Phi} H^{1}(k, S) \rightarrow H^{2}\left(\mathrm{~g}, K_{2} \bar{F} / K_{2} \bar{k}\right) . \tag{*}
\end{equation*}
$$

He uses this sequence to show that the image of Φ is finite if k is global, and that the kernel of Φ is finite when X is a conic bundle over P_{k}^{1} and k is local or global. This gives the finiteness of $A_{0}(X)$ for X / P_{k}^{1} a conic bundle over a local or a global field. He also gets $A_{0}(X)=0$ for X / P_{k}^{1} a conic bundle over a C_{1}-field.

[^0]
[^0]: Received February 25, 1981. Most of the work for this paper was done while the authors were staying at P.N. 48, whose hospitality they greatly appreciate.

