PROPER HOLOMORPHIC MAPPINGS AND THE BERGMAN PROJECTION

STEVEN R. BELL

Suppose that D_1 and D_2 are two smooth bounded pseudoconvex domains contained in \mathbb{C}^n , and suppose that f is a proper holomorphic mapping of D_1 onto D_2 . In this note, we prove that if the $\overline{\partial}$ -Neumann problem for D_1 satisfies global regularity estimates, then u = Det[f'] extends smoothly to bD_1 and f extends smoothly to $bD_1 - \{z : u(z) = 0\}$. It is a classical result that f is a branched cover of some finite order m. Hence, we can define m local inverses F_1, F_2, \ldots, F_m to f away from $\{f(z) : u(z) = 0\}$. We prove that if f is a holomorphic function in $C^{\infty}(\overline{D_1})$, then any symmetric function of $(h \circ F_1), (h \circ F_2), \ldots, (h \circ F_m)$ is a holomorphic function on D_2 which is in $C^{\infty}(\overline{D_2})$.

Let us say that a variety $V = \{h_1 = h_2 = \cdots = h_r = 0\}$ is smooth up to the boundary of D if the functions h_1, h_2, \ldots, h_r are holomorphic on D and smooth up to the boundary of D. The result on the symmetric functions of F_1, F_2, \ldots, F_m allows us to prove that if $V = \{h_1 = 0\}$ is a variety in D_1 which is smooth up to the boundary, then f(V) is a variety in D_2 which is smooth up to the boundary. In particular, the variety $\{f(z) : u(z) = 0\}$ is smooth up to bD_2 .

We also prove that the graph of f can be realized as a variety in $D_1 \times D_2$ which is smooth up to the boundary.

The proofs of the facts above rely on the observation that the same transformation rule which holds for the Bergman projections under bi-holomorphic mappings also holds for proper mappings. This allows techniques used in [2] to be applied to proper mappings.

The transformation rule for the Bergman projections under proper holomorphic mappings implies a corresponding transformation rule for the Bergman kernel functions.

The letter C will never denote the same constant twice in this paper. If D is a bounded domain contained in \mathbb{C}^n , the Bergman projection associated to D is the orthogonal projection of $L^2(D)$ onto its subspace consisting of holomorphic functions.

THEOREM 1. If P_i denotes the Bergman projection associated to the bounded domain D_i contained in \mathbb{C}^n , i = 1, 2, and f is a proper holomorphic mapping of D_1 onto D_2 , then

$$P_1(u\cdot (\phi\circ f))=u\cdot ((P_2\phi)\circ f)$$

where u = Det[f'] and $\phi \in L^2(D_2)$.

Received November 1, 1980. The author was supported by NSF grant #MCS80-17205.