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GRIFFITHS’ INTEGRAL FORMULA FOR THE
MILNOR NUMBER

GARY KENNEDY

Introduction. In [1], Griffiths obtained an integral formula for the Milnor
number # of an isolated hypersurface singularity:
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Here V is one of a family of complex analytic hypersurfaces in G+l acquiring
an isolated singularity at O, Vt[ is the intersection of V with a ball of radius

centered at the singularity, c._(Vt) is the (n-k)th Chern form in the
curvature of Vt, is the standard K/ihler form on 12"+ , and C(k,n) is a constant
depending only on k and n. (Griffiths did not calculate the C(k,n) but he did
show that they are positive.)
Formula (1) resembles the higher-dimensional Gauss-Bonnet formula [2].

Indeed, the left side of (1) is the Euler characteristic of the Milnor fiber Vt[],
while the leading term on the fight is basically the same as the integral occurring
in Gauss-Bonnet.

This note will show that in fact the Euler characteristic X of the Milnor fiber is
given by
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where E is a "twisted tangent bundle" obtained by tensoring the tangent bundle
of V with a certain line bundle, and where C(n) is the same constant which
appears in the Gauss-Bonnet formula. Using formula (2), one can readily obtain
Griffiths’ formula, with the constants explicitly determined.

Section states (2) precisely. Sections 2 and 3 are devoted to its proof, section
4 to Griffiths’ formula.

For definitions of the Milnor fiber and Milnor number, see [3]. For the
fundamentals of curvature and characteristic classes, see [4] or [5]. Griffiths’
article [1 explains the notion of "defect" and establishes certain notations which
are copied here.
Note in particular that the phrase "analytic variety" does not mean "analytic

manifold".
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