GENERALIZATIONS OF LIPSCHITZ SPACES AND AN APPLICATION TO HARDY SPACES AND BOUNDED MEAN OSCILLATION

SVANTE JANSON

Introduction. Lipschitz or Besov spaces and generalizations of them have been introduced and studied by many authors: e.g., Zygmund [33], Taibleson [27], Caldéron [2], Herz [11], Peetre [18], Triebel [30], to mention a few. Two such generalizations, more or less overlapping with the works of these authors, are defined and studied here. One (denoted by $\operatorname{Lip}(\rho, E)$ or $\Lambda(\rho, E)$) includes the Besov spaces $B_{p}^{s \infty}$ for $s>0$ (the Lipschitz spaces) and the other (denoted by $B(\rho, E)$) includes $B_{p}^{s 1}$ for $s<0$. The important feature of this paper is that the function ρ used in the definitions may grow arbitrarily slowly.

Section 5 gives a more general definition, including all Besov spaces $B_{p}^{s q}, s \neq 0$ ($p, q \geqslant 1$, since only Banach spaces are considered). There is also given a link between the two types of spaces.

Section 1 covers some preliminaries.
Section 2 gives the basic definitions. $\operatorname{Lip}(\rho, E)$ is the space of distributions whose moduli of continuity in the Banach space E are dominated by the rather arbitrary function $\rho . B(\rho, E)$ is defined using convolutions with test functions, cf. Flett [7] and Taibleson [27]. Equivalent definitions of the spaces are given in later sections.

Section 3 introduces a modification of $\operatorname{Lip}(\rho, E)$ denoted by $\Lambda(\rho, E)$. It may be defined using higher differences, so we have the same situation as classically with the Lipschitz space Lip_{1} and the Zygmund class Λ_{*}. The two spaces coincide when ρ grows slowly.

Section 4 gives duality theorems.
Section 5 was described above.
Section 6 and 7 treat multipliers and interpolation, without going into details.
Section 8 is an application to Hardy spaces. It is shown that $B M O(\rho)$ is the dual space of H_{ω}, for suitable pairs of functions ρ and ω (Theorem 13). The proof of this duality was in fact the starting point from which the present paper grew out.

We are so far dealing with functions and distributions on R^{d}, but everything holds also (with a few simplifications) on the torus T^{d}. In fact, many of the references given in the text treat only this case.

Section 9 gives more details on this case, and on the connection with spaces of

Received February 18, 1980. This research was done at the Mittag-Leffler Institute.

