ON ZETA FUNCTIONS OF MATRIX ALGEBRAS AND DISTRIBUTIONS

JULIAN ROSE

Introduction. Let Π be an irreducible, smooth representation of $G = \operatorname{GL}_n(F)$, where F is a nonarchimedean, local field. Denote the category of such representations by Irr G. If $s \in \mathbb{C}$, Res $\gg 0$, and Φ is a Schwartz-Bruhat function on the matrix algebra $M_n = M_n(F)$, then the following integral is convergent:

$$Z(\Phi,\Pi,s) = \int_G \Phi(x)\Pi(x)\alpha^s(x)d^{\times}x \quad \text{where} \quad \alpha^s(x) = |\det x|^s$$

By results of Godement and Jacquet in (G. J.), $Z(\Phi, \Pi, s)$ can be extended as a meromorphic, operator valued function of s. The operator valued distribution $\Phi \rightarrow Z(\Phi, \Pi, s)$ is called the Zeta distribution of M_n . Its behavior under the left and right multiplicative translations (denoted by λ and ρ) is described by the following equations:

$$\lambda(g)Z(\Pi,s) = \Pi(g^{-1})\alpha^{-s}(g)Z(\Pi,s) \qquad g \in G$$

$$\rho(g)Z(\Pi,s) = Z(\Pi,s)\Pi(g)\alpha^{s}(g).$$
(t)

If s is a pole of the Zeta distribution, then the first coefficient of the Laurent expansion of Z has the same invariance properties. Let $J_{\pi \cdot \alpha^s}$ denote these operator valued distributions which satisfy (t).

A. Weil has proved that $\dim J_{\Pi} = 1$ if n = 1(W1) or Π is cuspidal (J). The main result of this paper is the following:

THEOREM 3. If $\Pi \in \operatorname{Irr} G$ and Π is generic then $\dim J_{\Pi} = 1$.

By a generic representation we mean one which admits a Whittaker model. It is a "nondegenerate representation" in the terminology of (BZ). All tempered irreducible representations are generic.

This paper is a part of author's dissertation written under the direction of Professor Hervé Jacquet. We acknowledge also helpful comments from anonymous referees.

Preliminaries. We use results of Bernstein and Zelevinski throughout this paper and we adopt their notation.

Received January 15, 1980. Revision received September 2, 1980.