KERNELS FOR THE LOCAL SOLVABILITY OF THE TANGENTIAL CAUCHY-RIEMANN EQUATIONS

AL BOGGESS

Table of Contents

§1. Introduction 903
§2. Preliminaries 904
§3. A general approach to the tangential Cauchy-Riemann equations 907
§4. A new local support function 910
§5. The local solution to the tangential Cauchy-Riemann equations 916

1. Introduction. In 1972, Andreotti and Hill [AH] showed that if M is a real hypersurface in C^{n} with certain convexity properties, then its local $\bar{\partial}_{M^{-}}$ cohomology vanishes in certain bidegrees. Since that time, mathematicians have sought explicit kernels to represent a local solution to the tangential Cauchy-Riemann equations, in much the same way that the Cauchy kernel $1 / \pi z$ represents a solution to the equation $(\partial g / \partial \bar{z})=f, f \in C_{0}^{\infty}(\mathrm{C})$. In 1977, G. Henkin $\left[\mathrm{H}_{3}\right]$ accomplished this in the case M is strictly pseudoconvex. In this paper, we find an explicit kernel which represents a local solution to the equation $\bar{\partial}_{M} g=f$, where f is a smooth form on M of bidegree (r, s), provided the Levi form of M has at least $\max \{s+1, n-s\}$ eigenvalues of the same sign. Our convexity assumption is the same as the one assumed in [AH] and it is slightly stronger than the $Y(s)$ condition assumed in Folland and Kohn [FK] for the global solvability of $\bar{\partial}_{M}$. In the case M is strictly pseudoconvex, our solution agrees with Henkin's. Our kernel approach also exhibits the possible obstructions to locally solving the tangential Cauchy-Riemann equations in the bidegrees where the local $\bar{\partial}_{M}$ - cohomology does not a-priori vanish.

In our work, we employ a general class of kernels which was first introduced by Henkin, Romanov, and Skoda and then generalized and streamlined by Harvey and Polking [HP]. Much of our work involves constructing a new local support function for these kernels.

We have organized our work as follows. After a short preliminary chapter, we present a general approach to the tangential Cauchy-Riemann equations. The concepts in this chapter are presented in Harvey-Polking [HP] and Henkın [H_{3}] in the strictly pseudoconvex case, and there is no new work involved in

[^0]
[^0]: Received April 12, 1980. Revision received August 6, 1980. Research partially supported by the Michigan Society of Fellows in Ann Arbor, Michigan.

