A REFLECTION PRINCIPLE FOR DEGENERATE REAL HYPERSURFACES

K. DIEDERICH AND S. M. WEBSTER

Introduction. This paper is concerned with the continuation of a biholomorphic mapping f across an analytic real hypersurface in \mathbb{C}^n by means of a reflection principle. In particular, suppose that f maps D to D', where these are two bounded domains with smooth real analytic boundaries. Then we show

THEOREM. Associated to D are an integer k and a real analytic set $A \subset \partial D$, dim $A \leq 2n - 3$, such that if f and f^{-1} are C^k up to the boundary then f continues holomorphically past $\partial D \setminus A$.

More precise results are stated below in theorem (3.1) and its corollary (3.2). Reflection principles for strongly pseudoconvex hypersurfaces were given in [7], [9], [10], and [11]. We extend the method here to more general hypersurfaces at the expense of assuming more initial boundary regularity. However, if the domains D and D' are also assumed to be pseudoconvex then f is known to be smooth up to the boundary [1], [14].

The second named author was a visitor at the Gesamthochschule in Wuppertal while part of this work was undertaken and is grateful to that institution for its hospitality.

1. Invariant complex varieties. Let M denote an analytic real hypersurface in \mathbb{C}^n . We shall use both $z = (z^1, \ldots, z^n)$ and $w = (w^1, \ldots, w^n)$ to denote coordinates of points in \mathbb{C}^n . For a fixed point z_0 in M we assume the coordinates are chosen so that $z_0 = 0$ and the real tangent plane to M at z_0 is given by $Imz^n = 0$. Choose a real analytic defining function $r = r(z, \overline{z})$ for M near z_0 and a polycylindrical neighborhood $U_0 = \{z: |z^i| < \rho_0\}$, such that $r(z, \overline{w})$ converges for $(z, w) \in U_0 \times U_0$, and $r_n = \partial r(z, \overline{w})/\partial z^n \neq 0$.

For each w in U_0 define

$$Q_{w} \equiv U_{0} \cap Q_{w} = \{ z \in U_{0} : r(z, \overline{w}) = 0 \},$$
(1.1)

$$A_{w} \equiv U_{0} \cap A_{w} = \{ z \in U_{0} : Q_{z} = Q_{w} \}.$$
(1.2)

Clearly, $z \in A_z$, and $w \in A_z$ if and only if $A_w = A_z$. By the reality condition on r,

Received May 23, 1980. The second author is a Sloan fellow and is partially supported by N.S.F. grant no. MCS 78-01863.