THE n-WIDTH OF SETS OF ANALYTIC FUNCTIONS

S. D. FISHER AND CHARLES A. MICCHELLI

Introduction. The n-width of a subset A of a Banach space X is defined by

$$
\begin{equation*}
d_{n}(A ; X)=\inf _{X_{n}} \sup _{x \in A} \inf _{y \in X_{n}}\|x-y\| \tag{1}
\end{equation*}
$$

where X_{n} runs over all n dimensional subspaces of X. The concept of n-width was introduced by Kolmogoroff in [4] and is of central importance in many recent investigations. In this paper we give the exact n-width of some classes of analytic functions and asymptotic values for n-widths in a number of other cases.

In addition to the n-width defined in (1), called the Kolmogoroff n-width, there are two other related concepts. The Gel'fand n-width is defined by

$$
\begin{equation*}
d^{n}(A ; X, Y)=\inf _{Y_{n}} \sup _{x \in A \cap Y_{n}}\|x\| \tag{2}
\end{equation*}
$$

where Y_{n} runs over all subspaces of Y of codimension n (Y does not necessarily have to be X). We will call d^{n} defined in (2) the Gel'fand n-width of A in X relative to Y. The third n-width notion which we will study is the linear n-width defined by

$$
\begin{equation*}
s_{n}(A ; X, Y)=\inf _{P_{n}} \sup _{f \in A}\left\|f-P_{n} f\right\| \tag{3}
\end{equation*}
$$

where P_{n} runs over all bounded linear operators on Y whose range is a subspace of X of dimension n or less. We shall also determine the Gel'fand and linear n-width for a number of these cases (and show they are equal to the Kolmogoroff n-width as well).

The specific setting of our problem is this. Let Ω be a domain (open, connected set) in the complex plane and let K be a compact subset of Ω. For $1 \leqslant p \leqslant \infty$, let $H_{p}(\Omega)$ be the Hardy space H_{p} on Ω, see [9] and let A_{p} be the restriction to K of the unit ball of $H_{p}(\Omega)$. Take ν to be a probability measure on K and $1 \leqslant q<\infty$. We will generally use X to represent either $L^{q}(\nu), 1 \leqslant q<\infty$ or $C(K)$ and $\|\cdot\|$ for the usual norm on X. We seek the value of the n-width of A_{p} in the Banach space X and, in particular, the value of the n-width of A_{∞}. Throughout the paper, n will be the complex dimension (or codimension) of the subspaces in question.

Section 1 of the paper treats the case when Ω is simply-connected and hence may be taken to be Δ_{0}, the open disc of radius one centered at the origin. Section

