GALOIS CONJUGACY OF UNRAMIFIED TWISTS OF HECKE CHARACTERS

DAVID E. ROHRLICH

The purpose of this paper is to prove two theorems of a purely algebraic nature which find applications in the theory of Hecke L-functions (cf. [3], Prop. 2). The phenomenon described in the title has been noted previously, cf. Gross [2].

§1. We assume that for each algebraic number field L we are given an abelian group H_L and for each pair of number fields K, L with $K \supset L$ a group homomorphism

$$h_{K/L}: H_L \to H_K$$

such that the following conditions are satisfied:

(i) h_{L/L} = id.
(ii) Given K ⊃ M ⊃ L we have h_{K/L} = h_{K/M} ∘ h_{M/L}.
(iii) The degree [K : L] is an exponent for the kernel of h_{K/L}. Examples

(1) Let L^* denote the multiplicative group of L and L^{*n} the subgroup of nth powers. Let $H_L = L^*/L^{*n}$ and let

$$h_{K/L}: L^*/L^{*n} \to K^*/K^{*n}$$

be the natural map. Then conditions (i), (ii), and (iii) are satisfied. Indeed (iii) follows from the fact that if

$$N_{K/L}: K^* \to L^*$$

is the norm and

$$\operatorname{inc}_{K/L}: L^* \to K^*$$

is inclusion, then the composition $N_{K/L} \circ \operatorname{inc}_{K/L}$ has the form $\alpha \to \alpha^{[K:L]}$.

(2) Let μ_L denote the group of roots of unity in L. Then conditions (i), (ii), and (iii) are satisfied with $H_L = L^*/\mu_L L^{*n}$ and

$$h_{K/L}: L^*/\mu_L L^{*n} \to K^*/\mu_K K^{*n}$$

the natural map.

Received January 28, 1980. This research was supported in part by NSF grant MCS77-18723 (02).