A SELF-AVOIDING RANDOM WALK

GREGORY F. LAWLER

Table of Contents

1.	Introduction	655
2.	Simple Random Walk	657
3.	Self-Avoiding Random Walk	665
4.	Internal Set Theory	668
5.	Self-Avoiding Random Walk in Z^d ($d \ge 5$)	674
6.	The Time Scale Change for $d \ge 4$	685
7.	Comparison of Distributions	691
	References	692

1. Introduction. Let $Z^d = \{(z_1, \ldots, z_d) : z_i \in Z\}$ be the integer lattice. A k-step self-avoiding path is a sequence of points $[x_0, x_1, \ldots, x_k]$ in Z^d with $x_0 = 0$, $||x_i - x_{i-1}|| = 1$ for $i = 1, \ldots, k$, and $x_i \neq x_j$ for $i \neq j$. The study of self-avoiding paths originated in chemical physics as an attempt to model polymer chains. Two major questions were asked. First, if $\gamma_d(k)$ is the number of self-avoiding paths of length k, then how does $\gamma_d(k)$ grow with k? Second, what is the mean square distance of the self-avoiding walk from the origin, or more generally, what is the limiting distribution as k approaches infinity of the walk after k steps? While much numerical evidence has been gathered to answer these questions, especially in dimensions two and three, few sharp analytical results have been found. For a review of the work, both analytical and numerical, see [3].

Hammersley [12] first noted the relation $\gamma_d(j)\gamma_d(k) \ge \gamma_d(j+k)$ which implies that $\log \gamma_d(k)$ is a subadditive function of k. Hence there exists a constant β_d called the connective constant such that

$$\lim_{k\to\infty} (\gamma_d(k))^{1/k} = \beta_d.$$

Kesten [8] showed that

$$\lim_{k\to\infty}\gamma_d(k+2)/\gamma_d(k)=\beta_d^2,$$

but whether $\lim_{k\to\infty} \gamma_d(k+1)/\gamma_d(k)$ exists is still an open question.

Let S(n) be simple or unrestricted random walk on \mathbb{Z}^d . The distribution given to self-avoiding paths of length k was the conditional distribution of the

Received March 17, 1980.