A SELF-AVOIDING RANDOM WALK

GREGORY F. LAWLER

Table of Contents

1. Introduction 655
2. Simple Random Walk 657
3. Self-Avoiding Random Walk 665
4. Internal Set Theory 668
5. Self-Avoiding Random Walk in $\mathbf{Z}^{d}(d \geqslant 5)$ 674
6. The Time Scale Change for $d \geqslant 4$ 685
7. Comparison of Distributions 691
References 692
8. Introduction. Let $Z^{d}=\left\{\left(z_{1}, \ldots, z_{d}\right): z_{i} \in \mathbf{Z}\right\}$ be the integer lattice. \mathbf{A} k-step self-avoiding path is a sequence of points $\left[x_{0}, x_{1}, \ldots, x_{k}\right]$ in Z^{d} with $x_{0}=0,\left\|x_{i}-x_{i-1}\right\|=1$ for $i=1, \ldots, k$, and $x_{i} \neq x_{j}$ for $i \neq j$. The study of self-avoiding paths originated in chemical physics as an attempt to model polymer chains. Two major questions were asked. First, if $\gamma_{d}(k)$ is the number of self-avoiding paths of length k, then how does $\gamma_{d}(k)$ grow with k ? Second, what is the mean square distance of the self-avoiding walk from the origin, or more generally, what is the limiting distribution as k approaches infinity of the walk after k steps? While much numerical evidence has been gathered to answer these questions, especially in dimensions two and three, few sharp analytical results have been found. For a review of the work, both analytical and numerical, see [3].

Hammersley [12] first noted the relation $\gamma_{d}(j) \gamma_{d}(k) \geqslant \gamma_{d}(j+k)$ which implies that $\log \gamma_{d}(k)$ is a subadditive function of k. Hence there exists a constant β_{d} called the connective constant such that

$$
\lim _{k \rightarrow \infty}\left(\gamma_{d}(k)\right)^{1 / k}=\beta_{d} .
$$

Kesten [8] showed that

$$
\lim _{k \rightarrow \infty} \gamma_{d}(k+2) / \gamma_{d}(k)=\beta_{d}^{2}
$$

but whether $\lim _{k \rightarrow \infty} \gamma_{d}(k+1) / \gamma_{d}(k)$ exists is still an open question.
Let $S(n)$ be simple or unrestricted random walk on Z^{d}. The distribution given to self-avoiding paths of length k was the conditional distribution of the

