NOTE ON A PAPER OF F. TREVES CONCERNING MIZOHATA TYPE OPERATORS

J. SJÖSTRAND

0. Introduction. To simplify notations we shall systematically work with germs of smooth functions at the origin in R^2 (or C). Thus $C^{\infty}(R^2)$ stands for germs of smooth functions, and similarly for functions defined in a half-plane.

In [2] Treves investigates Mizohata type vector fields in \mathbb{R}^2 , which by definition are (germs of) smooth complex vector fields L defined near 0 such that

 $L(0), \overline{L(0)}$ are C-linearly dependent (0.1)

$$L(0), \left[L(0), \overline{L(0)}\right]$$
 are C-linearly independent. (0.2)

It is then easy, after a change of variables and multiplication to the left by a non-vanishing (germ of smooth) function to reduce L to the form,

$$L = \frac{\partial}{\partial t} - it \ g(t, x) \frac{\partial}{\partial x}, \quad \text{Re } g(0, 0) \neq 0.$$
 (0.3)

Treves shows that after a further change of variables conserving $t \le 0$ and $t \ge 0$ and multiplication by a non-vanishing factor, L can be reduced to

$$L = \frac{\partial}{\partial t} - it(1 + \rho(t, x))\frac{\partial}{\partial x}, \qquad (0.4)$$

where ρ vanishes to infinite order on t = 0. The argument is simple; suppose for simplicity that $\operatorname{Reg}(0,0) > 0$ (which can be achieved after the change $x \to -x$). Then by Taylor expanding in t we can construct u with the Taylor series

$$u(t,x) \sim x + \frac{it^2}{2} g(0,x) + a_3(x)t^3 + \cdots$$
 (0.5)

such that Lu vanishes to infinite order on t = 0: Lu = $O(t^{\infty})$, and there is a change of variables $\tilde{x} = x(t, x)$, $\tilde{t} = \tilde{t}(t, x)$ conserving $t \ge 0$, $t \le 0$ so that

$$u(t,x) = \tilde{x} + \frac{i\tilde{t}^2}{2}.$$
 (0.6)

In the new coordinates L will necessarily take the form (0.4). When $\rho = 0$, L is the Mizohata operator.

Received April 16, 1980.