NOTE ON A PAPER OF F. TREVES CONCERNING MIZOHATA TYPE OPERATORS

J. SJÖSTRAND

0. Introduction. To simplify notations we shall systematically work with germs of smooth functions at the origin in R^{2} (or C). Thus $C^{\infty}\left(R^{2}\right)$ stands for germs of smooth functions, and similarly for functions defined in a half-plane.

In [2] Treves investigates Mizohata type vector fields in \mathbf{R}^{2}, which by definition are (germs of) smooth complex vector fields L defined near 0 such that

$$
\begin{gather*}
L(0), \overline{L(0)} \text { are C-linearly dependent } \tag{0.1}\\
L(0),[L(0), \overline{L(0)}] \text { are C-linearly independent. } \tag{0.2}
\end{gather*}
$$

It is then easy, after a change of variables and multiplication to the left by a non-vanishing (germ of smooth) function to reduce L to the form,

$$
\begin{equation*}
L=\frac{\partial}{\partial t}-\text { it } g(t, x) \frac{\partial}{\partial x}, \quad \operatorname{Re} g(0,0) \neq 0 \tag{0.3}
\end{equation*}
$$

Treves shows that after a further change of variables conserving $t \leqslant 0$ and $t \geqslant 0$ and multiplication by a non-vanishing factor, L can be reduced to

$$
\begin{equation*}
L=\frac{\partial}{\partial t}-i t(1+\rho(t, x)) \frac{\partial}{\partial x}, \tag{0.4}
\end{equation*}
$$

where ρ vanishes to infinite order on $t=0$. The argument is simple; suppose for simplicity that $\operatorname{Reg}(0,0)>0$ (which can be achieved after the change $x \rightarrow-x$). Then by Taylor expanding in t we can construct u with the Taylor series

$$
\begin{equation*}
u(t, x) \sim x+\frac{i t^{2}}{2} g(0, x)+a_{3}(x) t^{3}+\cdots \tag{0.5}
\end{equation*}
$$

such that $L u$ vanishes to infinite order on $t=0: L u=O\left(t^{\infty}\right)$, and there is a change of variables $\tilde{x}=x(t, x), \tilde{t}=\tilde{t}(t, x)$ conserving $t \geqslant 0, t \leqslant 0$ so that

$$
\begin{equation*}
u(t, x)=\tilde{x}+\frac{i \tilde{t}^{2}}{2} \tag{0.6}
\end{equation*}
$$

In the new coordinates L will necessarily take the form (0.4). When $\rho=0, L$ is the Mizohata operator.

