ON THE φ-MIXING CONDITION FOR STATIONARY RANDOM SEQUENCES

RICHARD C. BRADLEY, JR.

Summary. Let $\varphi_1, \varphi_2, \varphi_3, \ldots$ be the dependence coefficients associated with the φ -mixing condition for a given strictly stationary random sequence. If the sequence is mixing, then either $\varphi_n \rightarrow 0$ or $\varphi_n \equiv 1$. An extension is given of a theorem of Kesten and O'Brien on the rate at which φ_n can approach 0.

Let $(X_k, k = ..., -1, 0, 1, ...)$ be a strictly stationary sequence of realvalued random variables on a probability space (Ω, \mathcal{F}, P) . For any collection Y of r.v.'s let $\mathfrak{B}(Y)$ be the Borel field generated by Y. For $-\infty \leq J \leq L \leq \infty$ let $\mathfrak{F}_J^L = \mathfrak{B}(X_k, J \leq k \leq L)$. For any two σ -fields \mathfrak{A} and \mathfrak{B} define

$$\varphi(\mathfrak{A},\mathfrak{B}) = \operatorname{Sup}|P(B|A) - P(B)| \qquad A \in \mathfrak{A}, B \in \mathfrak{B}, P(A) > 0.$$

For each $n \ge 1$ let $\varphi_n = \varphi(\mathcal{F}^0_{-\infty}, \mathcal{F}^\infty_n)$. The φ -mixing condition of I. A. Ibragimov (1959) is: $\varphi_n \to 0$ as $n \to \infty$.

Starting with Ibragimov [1], numerous limit theorems and invariance principles have been proved under the φ -mixing condition, sometimes requiring additional conditions on the rate at which $\varphi_n \to 0$; see, for example, the results referred to on pp. 26–29 of W. Philipp and W. Stout [4]. In the case where (X_k) is an aperiodic Markov chain with countable irreducible state-space, if $\varphi_n < 1$ for some *n* then $\exists C > 0$ and a > 0 such that $\varphi_n \leq Ce^{-an} \forall n$ (see M. Rosenblatt [5], pp. 209–212). It was once an open question whether φ_n had to approach 0 exponentially fast in the general case, but then H. Kesten and G. L. O'Brien [3] showed that on the contrary φ_n can approach 0 arbitrarily slowly.

Before stating our results we need some definitions. We assume T is an \mathfrak{F} -measurable P-measure-preserving automorphism of Ω , and U is the operator on \mathfrak{F} -measurable r.v.'s defined by Uf(w) = f(Tw). We assume that $X_n = U^n X_0$ for every integer n. Let $S = T^{-1}$. For any event A let l_A denote its indicator function; if $A \in \mathfrak{F}_J^L$, then $SA \in \mathfrak{F}_{J+1}^{L+1}$ and $Ul_A = l_{SA}$. Also, for each $n \ge 1$ let $\varphi_n^* = \varphi(\mathfrak{F}_n^\infty, \mathfrak{F}_{-\infty}^0)$; these φ_n^* 's are simply the φ_n 's for

Also, for each $n \ge 1$ let $\varphi_n^* = \varphi(\mathfrak{F}_n^\infty, \mathfrak{F}_{-\infty}^0)$; these φ_n^* 's are simply the φ_n 's for the sequence (Y_k) defined by $Y_k = X_{-k}$, and in their article Kesten and O'Brien called attention to an example of (X_k) for which $\varphi_n \to 0$ but $\varphi_n^* \to 0$. Here we will prove these two theorems:

THEOREM 1. If (X_k) is strictly stationary and mixing $(\forall A, B \in \mathcal{F}_{-\infty}^{\infty}, P(A \cap S^n B) \rightarrow P(A)P(B)$ as $n \rightarrow \infty$), then either $\varphi_n \rightarrow 0$ as $n \rightarrow \infty$ or $\varphi_n = 1 \ \forall n$.

Received November 8, 1979. Revision received January 28, 1980. This research was partially supported by NSF Grant MCS 79-05811.