
Vol. 47, No. 2 DUKE MATHEMATICAL JOURNAL (C) June 1980

COMPLETION OF LINK MODULES

W. S. MASSEY

1. introduction. Let L be a tame link of # (/ > 1) components imbedded in
the 3-sphere, S 3. One of the most important invariants of such a link is what R.
Crowell [7] calls the link module sequence:

O --> B --> A ---> I (H ) --> O. (1)

This is a short exact sequence of Z(H)-modules, where H denotes the
abelianized fundamental group of S 3 L, I I(H) is the augmentation ideal in
the integral group ring Z(H) and A is the Alexander module. (A detailed
exposition of the link module sequence is given in 4 of the present paper.) The
main purpose of this paper is to study the associated short exact sequence

(2)
consisting of the I-adic completions of the original modules (the definition of
the I-adic completion of a module is given in books on commutative algebra;
see [13], Chap. VIII for example). This is an exact sequence of modules over the

ring Z(H), which is the I-adic completion of Z(H).
There are two distinct reasons for introducing and studying the modules in

the exact sequence (2):
(a) The modules in the sequence (2) are invariant under isotopy, cobordism,

concordance, and/-equivalence of links. This is not true of th/modules in (1).
Various corollaries follow; for example, the ideal in the ring Z(H) generated by
the Alexander polynomial is also an invariant of isotopy, cobordisms, etc.

(b) The so-called "Chen groups" [10] of the link L are determined by the
module B together with its I-adic filtration. In fact, this seems to be the most
reasonable way to try to determine the structure of the Chen groups. The Chen
groups can be thought of as a first approximation to the lower central series
quotients of the group G rl(S3- L). (The Chen groups of L are the lower
central series quotients of G/G".) However, the Chen groups are much more
amenable to computation than the lower central series quotients.

2. Statement of results. We will consistently denote the kth lower central
series subgroup of a group G by Fk(G). To be precise, FI(G)= G and
F,+I(G)=[Fk(G),G for all k>_--1. This paper originated in the author’s
attempts to determine the structure of the lower central series quotient groups
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