INVERSE SCATTERING THEORY FOR PERTURBATIONS OF RANK ONE

PREBEN ALSHOLM

1. Introduction. Let H be a separable Hilbert space and A a self-adjoint operator in H, which is spectrally absolutely continuous, i.e., if E is the spectral measure for A, then the *absolutely continuous subspace* for A (the set of all $u \in H$ for which $(E(\cdot)u, u)$ is absolutely continuous with respect to Lebesgue measure) coincides with H. Let B be a rank one perturbation of A, i.e., Bu = Au + c(u, f)f for $u \in D(A)$, the domain of A. We take $f \in H$ to be a unit vector and the number c to be real, thus B is self-adjoint. The wave operators W_{\pm} for the pair B, A are defined by $W_{\pm} = \text{s-lim}_{t \to \pm \infty} \exp(itB)\exp(-itA)$, where s-lim means strong limit. T. Kato [4] has proved that W_{\pm} exist and are complete, i.e., in addition to the general identity

$$W_{\pm}^{*} W_{\pm} = I, \tag{1.1}$$

we also have that $W_{\pm} W_{\pm}^*$ is the orthogonal projection onto the absolutely continuous subspace for *B*. Thus the scattering operator $S = W_{\pm}^* W_{-}$ is unitary and the restriction $B_{\rm ac}$ of *B* to its absolutely continuous subspace is unitarily equivalent to *A*, in fact $B_{\rm ac} = W_{\pm} A W_{\pm}^*$.

The *inverse problem* of scattering theory is the problem of constructing the perturbation, i.e., V = B - A, from the scattering operator S and from some information about the eigenvalues of B. In this paper we shall relate V (i.e., c and f) to the spectral shift function $\xi(x)$ of Krein. For a perturbation V of trace class ξ is given by

$$\xi(x; B, A) = \xi(x) = (1/\pi) \lim_{\epsilon \downarrow 0} \arg \det(1 + V(A - x - i\epsilon)^{-1}), \quad (1.2)$$

see Krein [5], Birman and Krein [1] or A. Jensen and T. Kato [3]. We pick that branch of the arg-function for which $\arg \det(1 + V(A - z)^{-1})$ tends to zero as Im z tends to infinity. In a representation in which A is multiplication by the variable x, S is diagonal (since it commutes with A) and $\det S(x) =$ $\exp(-2\pi i \xi(x))$. In our case S(x) is a complex-valued function so that S(x) = $\exp(-2\pi i \xi(x))$, and we shall prove this result directly. The discontinuities of ξ are simple (i.e., ξ has limits from both the right and the left at those points) and are located at the eigenvalues for B. If conversely we are given N real numbers, $\lambda_1, \lambda_2, \ldots, \lambda_N$, and a unitary operator S, which in a diagonal representation for

Received August 21, 1979. Revision received January 21, 1980.