INVERSE SCATTERING THEORY FOR PERTURBATIONS OF RANK ONE

PREBEN ALSHOLM

1. Introduction. Let \mathbf{H} be a separable Hilbert space and A a self-adjoint operator in \mathbf{H}, which is spectrally absolutely continuous, i.e., if E is the spectral measure for A, then the absolutely continuous subspace for A (the set of all $u \in \mathbf{H}$ for which $(E(\cdot) u, u)$ is absolutely continuous with respect to Lebesgue measure) coincides with H. Let B be a rank one perturbation of A, i.e., $B u=$ $A u+c(u, f) f$ for $u \in \mathbf{D}(A)$, the domain of A. We take $f \in \mathbf{H}$ to be a unit vector and the number c to be real, thus B is self-adjoint. The wave operators $W_{ \pm}$for the pair B, A are defined by $W_{ \pm}=\mathrm{s}-\lim _{t \rightarrow \pm \infty} \exp (i t B) \exp (-i t A)$, where s -lim means strong limit. T. Kato [4] has proved that $W_{ \pm}$exist and are complete, i.e., in addition to the general identity

$$
\begin{equation*}
W_{ \pm}^{*} W_{ \pm}=I, \tag{1.1}
\end{equation*}
$$

we also have that $W_{ \pm} W_{ \pm}^{*}$ is the orthogonal projection onto the absolutely continuous subspace for B. Thus the scattering operator $S=W_{+}^{*} W_{-}$is unitary and the restriction B_{ac} of B to its absolutely continuous subspace is unitarily equivalent to A, in fact $B_{\text {ac }}=W_{ \pm} A W_{ \pm}^{*}$.

The inverse problem of scattering theory is the problem of constructing the perturbation, i.e., $V=B-A$, from the scattering operator S and from some information about the eigenvalues of B. In this paper we shall relate V (i.e., c and f) to the spectral shift function $\xi(x)$ of Krein. For a perturbation V of trace class ξ is given by

$$
\begin{equation*}
\xi(x ; B, A)=\xi(x)=(1 / \pi) \lim _{\epsilon \downarrow 0} \arg \operatorname{det}\left(1+V(A-x-i \epsilon)^{-1}\right), \tag{1.2}
\end{equation*}
$$

see Krein [5], Birman and Krein [1] or A. Jensen and T. Kato [3]. We pick that branch of the arg-function for which $\arg \operatorname{det}\left(1+V(A-z)^{-1}\right)$ tends to zero as $\operatorname{Im} z$ tends to infinity. In a representation in which A is multiplication by the variable x, S is diagonal (since it commutes with A) and $\operatorname{det} S(x)=$ $\exp (-2 \pi i \xi(x))$. In our case $S(x)$ is a complex-valued function so that $S(x)=$ $\exp (-2 \pi i \xi(x))$, and we shall prove this result directly. The discontinuities of ξ are simple (i.e., ξ has limits from both the right and the left at those points) and are located at the eigenvalues for B. If conversely we are given N real numbers, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$, and a unitary operator S, which in a diagonal representation for

