WHITTAKER MODELS FOR REAL GROUPS

FREYDOON SHAHIDI

Introduction. Whittaker functions were first introduced for the principal series representations of Chevalley groups by H. Jacquet [3]. Later, they were pursued by G. Schiffmann for algebraic groups of real rank one [12]. They played a very important role in the development of the Hecke theory for GL_n through the work of H. Jacquet, R. P. Langlands, I. I. Piatetski-Shapiro, and J. A. Shalika [4, 5]. More precisely, they were the main tools for the definitions of local and global *L*-functions and ϵ -factors. They also appeared quite useful in the development of the Hecke theory for other groups (cf. [10]), as well as in the definition of the local γ -factors of certain functional equations [13, 14], particularly in their factorization. There seems to be other evidence of interest, especially in the work of W. Casselman, B. Kostant [7], and G. Zuckerman.

The analytic behavior of these functions is much simpler when the ground field is non-archimedean; a good account of their analytic properties and some interesting formulas for certain class of such functions may be found in a recent paper of W. Casselman and J. A. Shalika [2]. But when the ground field is archimedean, these functions were believed to behave in a rather complicated manner. In fact, this has been one of the main obstacles in the development of the Hecke theory for number fields.

To make a more precise statement of the problem, we let G be a split reductive algebraic group over R. We fix a maximal torus T of G and we let B be a fixed Borel subgroup of G containing T. We write $B = M_0 A U$, the Langlands decomposition of B with $T = M_0 A$, and fix a non-degenerate (unitary) character χ of U (see section 1).

Now, let π be a continuous representation of G on a Fréchet space V. Denote by $(\pi_{\infty}, V_{\infty})$ the corresponding differentiable representation. Topologize V_{∞} with the relative topology inherited from $C^{\infty}(G, V)$. Let V_K be the subspace of K-finite vectors of V, where K is a fixed maximal compact subgroup of G with G = KB. We say that the representation (π, V) is non-degenerate, if there exists a continuous linear functional λ on V_{∞} , called a Whittaker functional, such that

$$\lambda(\pi(u)v) = \chi(u)\lambda(v) \qquad (u \in U, v \in V_{\infty}).$$

Then for every $v \in V_{\infty}$, the Whittaker function W_v is defined to be

$$W_v(g) = \lambda(\pi(g^{-1})v).$$

Received December 20, 1978. Revision received October 15, 1979. Supported by NSF Grant MCS 77-02181.