A NOTE ON THE Γ-SPECTRUM OF AN AUTOMORPHISM GROUP

RICHARD H. HERMAN AND ROBERTO LONGO

Introduction. Determination of the quantity $\Gamma(\alpha)$ relative to a noncommutative dynamical system (R, G, α) , G abelian, has been shown to be important in determining structural properties. First of all, if α is the modular group of a factor R, $\Gamma(\alpha)$ furnishes the Connes invariant S(R) (for a general von Neumann algebra one needs $\Gamma_B(\alpha)$, see below). Secondly, recent work of Connes-Takesaki [4], Kishimoto-Takai [8], Olesen-Pedersen [11], show that the maximality of $\Gamma \alpha$ is related to whether or not the crossed product, or the fixed point algebra is a factor (or simple in the C*-case). $\Gamma(\alpha)$ and $\Gamma_B(\alpha)$ also measure the innerness of α .

The spectrum of an automorphism group is ostensibly easier to calculate than α . We shall give conditions under which the spectrum and Γ coincide. Note also that $\Gamma(\alpha) = \operatorname{sp}(\alpha)$ for the system (R, G, α) entails that $\Gamma(\dot{\alpha}) = H$ where $(R, H \equiv G/\operatorname{ker}(\alpha), \dot{\alpha})$ has the obvious meaning.

The origin of results of this nature is the, then surprising, result of Størmer [13] (see also [1], [6], [9]).

In this paragraph we determine conditions under which the Borchers spectrum $\Gamma_B(\alpha)$ (and the Connes spectrum $\Gamma(\alpha)$) coincide with $sp(\alpha)$ for a W^* -dynamical system. We first recall some definitions.

1. By a W^* -dynamical system we mean a triple (R, G, α) consisting of a von Neumann algebra R, a locally compact group G and a pointwise ultraweakly continuous action $\alpha: G \rightarrow \operatorname{Aut}(R)$.

2. If G is abelian the Borchers spectrum of α is by definition, [12],

$$\Gamma_B(\alpha) = \bigcap \operatorname{Sp}(\alpha^e).$$

Here the spectrum of an automorphism is defined as in [2, 3], and e is an arbitrary projection in the fixed point algebra, R^{α} , such that its central support, c(e), = I. The notation α^{e} means $\alpha \mid eRe$.

The Borchers spectrum enjoys many properties in common with $\Gamma(\alpha)$ (recall that $\Gamma(\alpha)$ is defined requiring $e \neq 0$ instead of c(e) = I). Note that if α is centrally ergodic, then $\Gamma_B(\alpha) = \Gamma(\alpha)$ because for any projection $o \neq e \in R^{\alpha}$, c(e) is α -invariant, thus c(e) = I.

Received June 25, 1979. First author partially supported by the National Science Foundation; second author on leave of absence from Istituto Matematico "G. Castelnuovo"–Universitá di Roma, Italy and partially supported by the Italian C.N.R.