A NOTE ON THE Γ-SPECTRUM OF AN AUTOMORPHISM GROUP

RICHARD H. HERMAN and ROBERTO LONGO

Introduction. Determination of the quantity $\Gamma(\alpha)$ relative to a noncommutative dynamical system $(R, G, \alpha), G$ abelian, has been shown to be important in determining structural properties. First of all, if α is the modular group of a factor $R, \Gamma(\alpha)$ furnishes the Connes invariant $S(R)$ (for a general von Neumann algebra one needs $\Gamma_{B}(\alpha)$, see below). Secondly, recent work of Connes-Takesaki [4], Kishimoto-Takai [8], Olesen-Pedersen [11], show that the maximality of $\Gamma \alpha$ is related to whether or not the crossed product, or the fixed point algebra is a factor (or simple in the C^{*}-case). $\Gamma(\alpha)$ and $\Gamma_{B}(\alpha)$ also measure the innerness of α.

The spectrum of an automorphism group is ostensibly easier to calculate than α. We shall give conditions under which the spectrum and Γ coincide. Note also that $\Gamma(\alpha)=\operatorname{sp}(\alpha)$ for the system (R, G, α) entails that $\Gamma(\dot{\alpha})=H$ where ($R, H \equiv G / \operatorname{ker}(\alpha), \dot{\alpha})$ has the obvious meaning.

The origin of results of this nature is the, then surprising, result of Størmer [13] (see also [1], [6], [9]).

In this paragraph we determine conditions under which the Borchers spectrum $\Gamma_{B}(\alpha)$ (and the Connes spectrum $\Gamma(\alpha)$) coincide with $\operatorname{sp}(\alpha)$ for a W^{*}-dynamical system. We first recall some definitions.

1. By a W^{*}-dynamical system we mean a triple (R, G, α) consisting of a von Neumann algebra R, a locally compact group G and a pointwise ultraweakly continuous action $\alpha: G \rightarrow \operatorname{Aut}(R)$.
2. If G is abelian the Borchers spectrum of α is by definition, [12],

$$
\Gamma_{B}(\alpha)=\bigcap_{e} \operatorname{Sp}\left(\alpha^{e}\right)
$$

Here the spectrum of an automorphism is defined as in [2,3], and e is an arbitrary projection in the fixed point algebra, R^{α}, such that its central support, $c(e),=I$. The notation α^{e} means $\alpha \mid e R e$.

The Borchers spectrum enjoys many properties in common with $\Gamma(\alpha)$ (recall that $\Gamma(\alpha)$ is defined requiring $e \neq 0$ instead of $c(e)=I)$. Note that if α is centrally ergodic, then $\Gamma_{B}(\alpha)=\Gamma(\alpha)$ because for any projection $o \neq e \in R^{\alpha}, c(e)$ is α-invariant, thus $c(e)=I$.

[^0]
[^0]: Received June 25, 1979. First author partially supported by the National Science Foundation; second author on leave of absence from Istituto Matematico "G. Castelnuovo"-Universitá di Roma, Italy and partially supported by the Italian C.N.R.

