SINGULAR SOLUTIONS FOR ANALYTIC PSEUDODIFFERENTIAL OPERATORS OF PRINCIPAL TYPE

NICHOLAS HANGES

0. Introduction and statements of results. We are interested in analytic pseudodifferential operators P. We wish to construct distributions u, so that Pu is analytic and u has prescribed wave front set. Our motivation, in part, comes from Baouendi-Treves-Zachmanoglou [1], who constructed solutions to analytic partial differential equations with prescribed zeroes or singular support. See also Duistermaat-Hörmander [12], Hörmander [13] and Sjöstrand [10] for some beautiful results in the C^{∞} category. Of course in [12] and [13] condition (P) is assumed throughout, whereas in our present study condition (P) may be violated.

To be precise now, let P be a classical analytic pseudodifferential operator of degree m on an open subset $\Omega \subset \mathbb{R}^n$. (See for example [3], [5] for the theory.) Let p be its principal symbol and $\rho \in T^*(\Omega) \setminus 0$ a characteristic point. We will assume P to be of principal type at ρ , that is, we assume that for some complex number z, the Hamilton field of $\operatorname{Re}(zp)$, $H_{\operatorname{Re}(zp)}$ and the radial vector field, $\partial/\partial\lambda$ are linearly independent at ρ .

Consider the Lie algebra \mathcal{R} generated by $H_{\operatorname{Re} p}$, $H_{\operatorname{Im} p}$ and $\partial/\partial \lambda$. These three vector fields have analytic coefficients and hence determine a foliation of $T^*(\Omega)\setminus 0$ by Nagano's Theorem [8]. Note that the dimension of the leaves need not be constant as in the classical Frobenius theorem. Let \mathcal{L} be the leaf of this foliation through ρ . It is an analytic conic submanifold of $T^*(\Omega)\setminus 0$, with tangent space at each point equal to \mathcal{R} . Since P is of principal type we may write dimension $\mathcal{L} = k + 1$ with $k \ge 1$.

The general question we wish to consider is the following: When can we find $u \in \mathfrak{D}'(\Omega)$ so that Pu is analytic and $WF(u) = \mathfrak{L}$? Certainly a necessary condition for the above to hold is that

$$\mathcal{L} \subset \{ \rho \in T^*(\Omega) \setminus 0 : p(\rho) = 0 \}$$

$$(0.1)$$

Actually this is the only assumption we need. It is clearly invariant under canonical transformation and multiplication of P by an elliptic factor. The main result of this paper is

Received August 29, 1979. Supported in part by NSF grant MCS 78-02738.