THE INDEX OF THE HECKE RING, T_k , IN THE RING OF INTEGERS OF $T_k \otimes Q$

NAOMI JOCHNOWITZ

Section 1. Introduction. Let k be an even integer and let S_k be the vector space of cusp forms of weight k for the full modular group. Recall the following formula which for any prime p gives the action of the Hecke operator T_p on the q-expansion of an element of S_k .

$$T_p: \sum a_n q^n \mapsto \sum a_{np} q^n + p^{k-1} \sum a_n q^{np}$$

Let $T_k \subseteq \operatorname{End}_C S_k$ be the commutative ring generated by the Hecke operators. Then it is well known that $T_k \otimes Q$ is isomorphic to a direct product of totally real number fields whose dimension over Q equals $\dim_C S_k$. Moreover, in all known cases, $T_k \otimes Q$ is actually isomorphic to a single number field.

The ring T_k is isomorphic to an order in the product of number fields $T_k \otimes Q$. In other words, T_k is a subring of $T_k \otimes Q$ which when considered as a Z module is free of maximal rank. $T_k \otimes Q$ has a unique maximal order, isomorphic to the product of rings of integers of its component number fields, and it is interesting to ask how large is the order T_k . More precisely, if \mathcal{O}_k denotes the maximal order in $T_k \otimes Q$, one may want to determine the index $[\mathcal{O}_k : T_k]$.

For those weights k where S_k is one dimensional (k = 12, 16, 18, 20, 22, 26) it is easy to see that $T_k \times Q \approx Q$ and $T_k = Z$. For k = 24, $T_k \otimes Q \approx Q[\sqrt{144169}]$, and T_k is the unique suborder of index 24 in the ring of integers of $T_k \otimes Q$. ([8] §8)

In this paper we prove the following theorem dealing with the natural question: What happens to the index $[O_k : T_k]$ as the weight k approaches infinity?

THEOREM 1.1. If N is any integer and k is sufficiently large, N divides the index $[O_k : T_k]$.

This is obviously equivalent to

THEOREM 1.2. Given any prime l and any positive integer N, there exists an integer B such that if $k \ge B$, l^N divides the index $[0_k : T_k]$.

We actually prove the stronger result that for any prime l and any positive integer N, if the weight k is sufficiently large, the additive abelian group $\mathfrak{O}_k/\mathsf{T}_k$ contains a direct sum of N subgroups of order l.

Received July 2, 1979; Revision received August 22, 1979.