THE INDEX OF THE HECKE RING, T_{k}, IN THE RING OF INTEGERS OF $\mathrm{T}_{k} \otimes \mathrm{Q}$

 NAOMI JOCHNOWITZ

 NAOMI JOCHNOWITZ}

Section 1. Introduction. Let k be an even integer and let S_{k} be the vector space of cusp forms of weight k for the full modular group. Recall the following formula which for any prime p gives the action of the Hecke operator T_{p} on the q-expansion of an element of S_{k}.

$$
T_{p}: \sum a_{n} q^{n} \mapsto \sum a_{n p} q^{n}+p^{k-1} \sum a_{n} q^{n p}
$$

Let $\mathrm{T}_{k} \subseteq \operatorname{End}_{\mathrm{C}} S_{k}$ be the commutative ring generated by the Hecke operators. Then it is well known that $\mathrm{T}_{k} \otimes \mathrm{Q}$ is isomorphic to a direct product of totally real number fields whose dimension over Q equals $\operatorname{dim}_{\mathrm{C}} S_{k}$. Moreover, in all known cases, $\mathrm{T}_{k} \otimes \mathrm{Q}$ is actually isomorphic to a single number field.

The ring T_{k} is isomorphic to an order in the product of number fields $\mathrm{T}_{k} \otimes \mathrm{Q}$. In other words, T_{k} is a subring of $\mathrm{T}_{k} \otimes \mathrm{Q}$ which when considered as a Z module is free of maximal rank. $T_{k} \otimes Q$ has a unique maximal order, isomorphic to the product of rings of integers of its component number fields, and it is interesting to ask how large is the order T_{k}. More precisely, if \mathcal{O}_{k} denotes the maximal order in $\mathrm{T}_{k} \otimes \mathrm{Q}$, one may want to determine the index $\left[\theta_{k}: \mathrm{T}_{k}\right]$.

For those weights k where S_{k} is one dimensional $(k=12,16,18,20,22,26)$ it is easy to see that $\mathrm{T}_{k} \times \mathrm{Q} \approx \mathrm{Q}$ and $\mathrm{T}_{k}=\mathrm{Z}$. For $k=24, \mathrm{~T}_{k} \otimes \mathrm{Q} \approx \mathrm{Q}[\sqrt{144169}]$, and T_{k} is the unique suborder of index 24 in the ring of integers of $\mathrm{T}_{k} \otimes \mathrm{Q}$. ([8] §8)

In this paper we prove the following theorem dealing with the natural question: What happens to the index $\left[\Theta_{k}: \mathrm{T}_{k}\right]$ as the weight k approaches infinity?

Theorem 1.1. If N is any integer and k is sufficiently large, N divides the index $\left[\Theta_{k}: \mathrm{T}_{k}\right]$.

This is obviously equivalent to
Theorem 1.2. Given any prime l and any positive integer N, there exists an integer B such that if $k \geqslant B, l^{N}$ divides the index $\left[\mathcal{O}_{k}: \mathrm{T}_{k}\right]$.

We actually prove the stronger result that for any prime l and any positive integer N, if the weight k is sufficiently large, the additive abelian group $\mathcal{\vartheta}_{k} / \mathrm{T}_{k}$ contains a direct sum of N subgroups of order l.

