NOTE ON THE DECAY OF ACOUSTIC WAVES

JAMES RALSTON

In [6] Melrose uses the fundamental results of [7] to deduce uniform local decay theorems for the wave equation in "nontrapping" exterior domains. The purpose of this note is to point out that [7], combined with the results of Vainberg [12], implies slightly stronger theorems. This approach was suggested by J. Rauch in his extension of Vainberg's work, [9], and it leads to the estimate (6) below.

As in [6] we consider the following mixed problems in an exterior domain $\Omega \subset \mathbb{R}^n$ with smooth boundary $\partial \Omega$:

$$\frac{\partial^2 u}{\partial t^2} - \Delta u = 0 \quad \text{on} \quad \mathsf{R} \times \Omega, \qquad u = 0 \quad \text{on} \quad \mathsf{R} \times \partial \Omega.$$
$$u(0, x) = 0, \qquad \frac{\partial u}{\partial t} (0, x) = f \tag{D}$$

and

$$\frac{\partial^2 u}{\partial t^2} - \Delta u = 0 \quad \text{on} \quad \mathsf{R} \times \Omega, \qquad \frac{\partial u}{\partial \nu} = 0 \quad \text{on} \quad \mathsf{R} \times \partial \Omega$$
$$u(0, x) = 0, \qquad \frac{\partial u}{\partial t} (0, x) = f, \tag{N}$$

where the initial value f is supported in $\Omega \cap |x| < R$. We assume throughout that Ω contains $|x| \ge R$.

If Ω is nontrapping in the sense made precise in [6], then the results of [7] imply that the fundamental solutions for the problems (D) and (N) have distribution kernels E(t; x, y) which are actually smooth functions on the closed set

$$\{(x, y) \in \overline{\Omega} \times \overline{\Omega} : |y| \leq R \text{ and } |x| \leq t - T(R)\}.$$

Thus, defining $E_0 = \rho E$, where $\rho(t, x)$ is a smooth function on $\mathbb{R}_+ \times \overline{\Omega}$ such that

(i) $\rho(t, x) = h(t)$ on a neighborhood of $\partial \Omega$,

(ii) $\rho \equiv 1$ on t - T(R) - 1 < |x| < t + R + 1, and

(iii) $\rho \equiv 0$ on |x| < t - T(R) - 2 and |x| > t + R + 2,

one sees immediately that E_0 satisfies Vainberg's condition D' with $N = \infty$. Thus, letting $R(k) = (k^2 + \Delta)^{-1}$, where Im k > 0 and Δ denotes the Laplacian in

Received May 4, 1979. Revision received September 5, 1979.