THE EXTREME POINTS OF SOME CLASSES OF HOLOMORPHIC FUNCTIONS

FRANK FORELLI

1. Introduction. Let \overline{W} be a bordered Riemann surface (our notation and terminology is that of [3]). We will denote by H(W) the class of all holomorphic functions on W, and we will denote by N(W) the class of those f in H(W) such that Re f > 0. Let $\zeta \in W$ and let

$$N(W,\zeta) = \{ f : f \in N(W), f(\zeta) = 1 \}.$$

Thus $N(W,\zeta)$ is convex (and compact in the compact open topology). In this paper we find the extreme points of $N(W,\zeta)$ if \overline{W} is compact and planar. This is Corollary 3.3 of section 3. Section 2 contains two propositions which will be used in section 3.

This paper might be thought of as an appendix to [7].

2. Functional analysis

2.1. Let X be a compact Hausdorff space and let

$$P(X) = \{ \mu : \mu \in M_+(X), \, \mu(X) = 1 \},\$$

where by $M_+(X)$ we mean the class of all Radon measures on X. Thus if $\mu \in M_+(X)$ and $E \subset X$, then $\mu(E) \ge 0$. Let $\varphi_1, \ldots, \varphi_n \in C(X, \mathbb{R})$, let $\theta_1, \ldots, \theta_n \in \mathbb{R}$, and let

$$B = \left\{ \mu \colon \mu \in P(X), \int \varphi_j d\mu = \theta_j, \ 1 \le j \le n \right\}.$$

PROPOSITION. Let $\mu \in \partial B$, where by ∂B we mean the class of all extreme points of B. Then μ is a convex combination of n + 1 members of $\partial P(X)$.

Proof. We let $\varphi = (1, \varphi_1, \dots, \varphi_n)$ and $\theta = (1, \theta_1, \dots, \theta_n)$. Then

$$\int \varphi \, d\mu = \theta. \tag{2.1}$$

Let $E_1, \ldots, E_{n+2} \subset X$ be μ measurable sets such that (a) $E_j \cap E_k = \emptyset$ if $j \neq k$, and (b) $X = \bigcup_{i=1}^{n+2} E_j$. Let $\mu_j = \mu \sqcup E_j$. If v_1, \ldots, v_{n+2} are vectors in \mathbb{R}^{n+1} ,

Received July 2, 1979. Author partially supported by National Science Foundation.