MICROLOCAL STRUCTURE OF INVOLUTIVE CONICAL REFRACTION

R. B. MELROSE AND G. A. UHLMANN

1. Introduction. The phenomenon of conical refraction (see Courant \& Hilbert [3]), which is the splitting of a ray, by a biaxial crystal, into a cone of rays is attributable to the non-uniform multiplicity of Maxwell's equations in the crystal. Here, we investigate single operators which exhibit similar behavior. Explicitly, we suppose P to be a classical pseudodifferential operator of order m on a C^{∞} manifold M and $\rho \in T^{*} M \backslash 0$ to be a base point near which the following conditions hold:
(1.1) P has real principal symbol p.

Let $\Sigma=\left\{\rho^{\prime} \in T^{*} M \backslash 0 ; p\left(\rho^{\prime}\right)=0\right\}$ and $\Sigma_{2}=\left\{\rho^{\prime} \in \Sigma ; d p\left(\rho^{\prime}\right)=0\right\}$.
(1.2) $\quad \Sigma_{2}$ is a non-radical involutive submanifold of codimension $k \geqslant 3$ through ρ.

The Hessian bilinear form of $p, \operatorname{Hess}(p)\left(\rho^{\prime}\right): T_{\rho^{\prime}}\left(T^{*} M\right) \times T_{\rho^{\prime}}\left(T^{*} M\right) \rightarrow \mathrm{R}$ is invariantly defined for every $\rho^{\prime} \in \Sigma_{2}$. To fix the form of Σ near Σ_{2} we require
(1.3) $\operatorname{Hess}(p)(\rho)$ has rank k and positivity 1.

In view of (1.2) this condition persists for $\rho^{\prime} \in \Sigma_{2}$ near ρ. A necessary and sufficient condition for the well-posedness of the Cauchy problem for a second order hyperbolic operator satisfying global versions of (1.2), (1.3), the Levi condition, was obtained by Ivrii \& Petkov [6], Hörmander [4] and we assume a microlocal version of it :

$$
\begin{equation*}
\left.\sigma_{\text {sub }}(P)\right|_{\Sigma_{2}}=0 \quad \text { near } \rho . \tag{1.4}
\end{equation*}
$$

The subprincipal symbol is well defined as a function on $T^{*} M$ if P acts on half densities, otherwise $\sigma_{\text {sub }}(P)$ will be a section of a line bundle, so (1.4) is meaningful.

Under assumptions (1.1)-(1.4) we construct two distinguished microlocal parametrices for P at ρ. The submanifold Σ_{2}, being involutive, has a natural k-foliation on the leaves of which the Hessian of p induces a Lorentzian structure (i.e., a pseudo-Riemannian structure of positivity 1). Once we select a local forward "time" direction on the leaf through ρ, and therefore on all leaves near ρ, we can define $C_{2}^{+} \subset \Sigma_{2} \times \Sigma_{2}$, the forward double bicharacteristic relation, by admitting $\left(\rho^{\prime \prime}, \rho^{\prime}\right) \in C_{2}^{+}$when $\rho^{\prime \prime}$ is on the same leaf as ρ^{\prime} and

[^0]
[^0]: Received March 27, 1979. This research was supported in part by the National Science Foundation under grant number MCS 7704148.

