June 1979

A NEW PROOF OF CERTAIN FORMULAS FOR *p*-ADIC *L*-FUNCTIONS

NEAL KOBLITZ

The purpose of this paper is to give simple proofs using *p*-adic measures for Leopoldt's formula $L_p(1, \chi)$ [13] and for formulas expressing $L'_p(0, \chi)$ and $L_p(k, \chi), k \ge 1$, in terms of the *p*-adic log Γ -function. The expression for $L'_p(0, \chi)$ was derived by J. Diamond in [2] and by B. Ferrero and R. Greenberg in [5], and the formula for $L_p(k, \chi)$ was proved in [3].

§1. Construction of *p*-adic *L*-functions. Let $\chi : (\mathbb{Z}/d\mathbb{Z})^* \to \overline{\mathbb{Q}}^*$ be a primitive Dirichlet character, which we consider as a function $\chi : \mathbb{Z} \to \overline{\mathbb{Q}}^*$ by extending by zero to *n* not prime to *d*. Recall ([6]) that if $L(s, \chi) = \sum \chi(n)n^{-s}$ is analytically continued to the complex *s*-plane, we have

$$L(1 - n, \chi) = -\frac{1}{n} B_{n, \chi}, \qquad (1.1)$$

where $B_{n, \chi}$ is defined by

$$\sum_{0 \le a \le d} \frac{\chi(a)te^{at}}{e^{dt} - 1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{t^n}{n!} .$$
 (1.2)

(The usual Bernoulli numbers B_n are defined by (1.2) with d = 1, $\chi(0) = 1$.) Thus, $L(1 - n, \chi)$ is in the field $Q(\chi)$ obtained by adjoining the values of χ . It is these algebraic special values of $L(s, \chi)$ which can be studied arithmetically, and used to form the *p*-adic analog of $L(s, \chi)$ for any prime *p*.

Let \mathbb{Z}_p , $\mathbb{Z}_p^* = \mathbb{Z}_p - p\mathbb{Z}_p$, \mathbb{Q}_p , Ω_p denote, respectively, the ring of *p*-adic integers, the multiplicative group of units in \mathbb{Z}_p , the field of fractions of \mathbb{Z}_p , and the *p*-adic completion of the algebraic closure \mathbb{Q}_p . The functions $\operatorname{ord}_p x$ and $|x|_p$ on Ω_p are normalized so that $\operatorname{ord}_p p = 1$. Fix an imbedding $\overline{\mathbb{Q}} \subset \Omega_p$; any algebraic number will be considered simultaneously complex and *p*-adic via this imbedding. In particular, the same letter χ will denote the character on $(\mathbb{Z}/d\mathbb{Z})^*$ considered to take values in \mathbb{C} or Ω_p . For any $a \in (\mathbb{Z}/p\mathbb{Z})^*$, let $\omega(a)$ be the unique (p-1)st root of 1 in \mathbb{Z}_p^* which reduces to a modulo p. ω is a primitive Dirichlet character mod p, which we may also consider as a function on \mathbb{Z} or \mathbb{Z}_p (defined to be 0 on $p\mathbb{Z}_p$). Let χ_n denote the primitive character induced by $\chi \overline{\omega}^n$ ($\overline{\omega}$ denotes the complex conjugate character $\overline{\omega} = \omega^{-1}$).

Received December 27, 1978.