SIMULTANEOUS RESOLUTION AND DISCRIMINANTAL LOCI

JONATHAN M. WAHL

Contents

Introduction 341
§1. Liftable divisors 344
§2. The spaces R_{Z} 346
§3. Deformations of X which blow down 352
§4. Applications to normal flatness and equisingularity. 355
§5. Minimally elliptic singularities 358
§6. Rational singularities and the discriminant locus 363
Appendix. Smoothable curves 371
References 374

Introduction. Let $\operatorname{Spec} R$ be a two-dimensional normal singularity over an algebraically closed field k of characteristic 0 , and let $X \rightarrow \operatorname{Spec} R$ be the minimal resolution. It is known ([24], [32]) that a deformation of X blows down to a deformation of R iff $h^{1}\left(\mathcal{O}_{X}\right)$ remains constant; this condition defines a subscheme B of D_{X}, the deformation space of $X . B$ has been studied by Artin-Schlessinger [2] (who call it Res), where an algebraic convergence theorem is proved. Via the (finite) blowing-down map $\Phi: B \rightarrow D_{R}\left(D_{R}=\right.$ deformation space of $\operatorname{Spec} R$), they view B as giving deformations of R which resolve simultaneously, after base change. The aim of this paper is to study the properties of B, the base change given by Φ, and the image $\Phi(B) \subset D_{R}$. An ultimate goal should be to understand singularities corresponding to generic points of $\Phi(B)$. Our major results, discussed below, are Theorems 2.12, 5.6, and 6.14 .

The basic examples are the rational double points (RDP's), denoted by A_{n}, D_{n}, E_{6}, E_{7}, and E_{8}. Brieskorn has shown [6] that Φ is surjective, and in fact "is" the map $\mathrm{C}^{n} \rightarrow \mathrm{C}^{n} / W$, where $W=$ Weyl group of the corresponding Lie algebra. This has been generalized ([2], [17], [34]) to arbitrary rational singularities: $\Phi(B)$ is a smooth irreducible component $A\left(=\right.$ Artin component) of D_{R}, and $B \rightarrow A$ is Galois, with group a direct product of Weyl groups which can be read off from the graph of R. In the rational case, $B=D_{X}$ (hence is smooth), and $\Phi(B)$ contains smoothings. If $h^{1}\left(\mathcal{O}_{X}\right)>0, \Phi(B)$ will be part of the discriminant locus

[^0]
[^0]: Received July 14, 1978. Revision received November 17, 1978. Partially supported by NSF grant \# MCS77-05724.

