CROSSED PRODUCTS OF UHF ALGEBRAS BY PRODUCT TYPE ACTIONS

OLA BRATTELI

Abstract. We study the primitive ideal spectrum of the C^* -crossed product of a UHF algebra by certain product type actions of locally compact abelian groups. Any second countable group can be represented in this way with Γ -spectrum equal to the dual group, i.e. such that the crossed product is primitive, but the crossed product is never simple if the group has a nontrivial connected group as a direct summand, it may or may not be simple if the group is totally disconnected non-discrete, and it is always simple if the group is discrete.

1. Introduction. Let $(\mathfrak{A}, G, \alpha)$ be a C^* -dynamical system, where G is a locally compact abelian group, and α is a strongly continuous representation of G in the group of *-automorphisms of the C^* -algebra \mathfrak{A} . Let $C^*(\mathfrak{A}, G, \alpha)$ be the C^* -crossed product of \mathfrak{A} by G, [12], [29]. The first step in describing the structure of $C^*(\mathfrak{A}, G, \alpha)$ is to investigate its primitive ideal structure. Two aspects of the dynamics α are important for this study, ergodicity and freeness, [13], [14], [20], [28], [29], [33], [34], [35].

Most authors agree that the relevant notion of ergodicity in this context is the ergodicity of the action induced by α on the primitive ideal space $Prim(\mathfrak{A})$ of \mathfrak{A} . It is not clear, however, which notion of freeness of the action should be used. Traditionally, one considers freeness of the induced action on $Prim \mathfrak{A}$, $\hat{\mathfrak{A}}$, etc., or appropriate conditions of "outerness" of the action. Recently it has become clear that a more relevant notion of freeness is associated with the Connes' spectrum $\Gamma(\alpha)$ of the action α , [7], [21]. The main purpose of the present note is to show that this notion of freeness is not strong enough to give a complete characterization of the primitive ideal spectrum of $C^*(\mathfrak{A}, G, \alpha)$, at least if \mathfrak{A} is not type I or G is not discrete.

Let \hat{G} denote the dual group of G, [26], and $\operatorname{Sp}(\alpha) \subseteq \hat{G}$ the (Arveson) spectrum of α , [1]. The Γ -spectrum (= Connes spectrum) $\Gamma(\alpha)$ of α is then defined by

$$\Gamma(\alpha) = \bigcap_{\mathfrak{R}} \operatorname{Sp}(\alpha \mid \mathfrak{B})$$

where \mathfrak{B} ranges over all non-zero α -invariant hereditary subalgebras of \mathfrak{A} .

If $(\mathfrak{M}, G, \alpha)$ is a W^* -dynamical system, where \mathfrak{M} is σ -finite and G separable abelian, it is known that the von Neumann crossed product $W^*(\mathfrak{M}, G, \alpha)$ is a factor if and only if $\Gamma(\alpha) = \hat{G}$ and α is ergodic on the center of \mathfrak{M} , ([8], Corollary 3.4). Recently, corresponding results have been derived for C^* -dynamical systems, [22], [16]. Recall that an ideal (which in this paper always means a

This is a corrected and extended version of the papers [5], [6]. Received April 24, 1978.