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Section 1. Introduction.

Recently characterizations of the classical Hardy spaces have been given
which have obvious extensions to very general contexts. These character-
izations are in terms of maximal functions [1], [9] and in terms of the atomic
decomposition [4], [6]. The purpose of this paper is to study the relationships
between these spaces in the context of the unit ball B” in complex n-space. In
fact, we will show that the atomic Hardy spaces and the maximal function
Hardy spaces are the same for 0 < p < 1. In addition, we will show the usual
Hardy spaces #” of holomorphic functions in G¥ are the spaces of ‘‘holomor-
phic parts’’ of functions in the atomic Hardy spaces. These results extend to
0 < p < 1 the corresponding results for p = 1 due to Coifman, Rochberg and
G. Weiss [5] and to L. Carleson [2], [3]. As a consequence of these results we
obtain a characterization of the dual space of #”, and we derive an analogue of
the factorization theorem of [5] for #” (0 < p = 1).

Let us be more specific. We denote by #*(B") (0 < p < ) the space of func-
tions F(z) which are holomorphic in the unit ball B* = {z = (z,, - - +, z,) € C*:
Izl > 1} and which satisfy

IRz, = osup L IF(rz)Pdo(z) < o,

<r<l1

where 8o is surface area measure on 3, = 3, _; = dB". By identifying F € #*
with its boundary values we identify %7 as a subspace of L?(3).

The space #? is of special interest because it is a Hilbert space. Let
P: L? - %2 be the orthogonal projection. Then P has a representation in terms
of the Cauchy-Szégo integral as follows: If F € L*(Z), then

F()

T=r-0 do({)

a.1n SF(rz) = CL

and
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