COVARIANT REPRESENTATIONS ON THE CALKIN

ALGEBRA I RICHARD LOEBL AND CLAUDE SCHOCHET

0. Suppose \mathcal{H} is a Hilbert space and G is a locally compact group with a strongly continuous unitary representation on \mathcal{H} . Then G acts by conjugation on the bounded operators $\mathcal{L}(\mathcal{H})$ and on the Calkin algebra $\mathcal{L}(\mathcal{H})/\mathcal{H}(\mathcal{H})$, where $\mathcal{H} = \mathcal{H}(\mathcal{H})$ is the ideal of compact operators. Suppose also that X is a G-space, so that G acts on the continuous functions C(X) by $f_q(x) = f(g^{-1}x)$.

Our intention is to study covariant representations $\tau : C(X) \to \mathscr{L}(\mathscr{H})/\mathscr{H}(\mathscr{H})$, where covariance means that $g \cdot \tau(f) \cdot g^* = \tau(f_g)$. Examples indicate that the problem should be modified to study covariant representations $\tau : C(X) \to \mathscr{L}_G/\mathscr{H}$ where $\mathscr{L}_G = \{T \in \mathscr{L}(\mathscr{H}) \mid \text{the function } g \rightsquigarrow gTg^* \text{ is norm$ $continuous}\}$. In this paper we lay the foundations for the study of such representations.

We begin by establishing general properties of \mathscr{L}_G . It is a C^* -algebra containing the scalars and \mathscr{H} . Further, the operators fixed by the action of G have a particularly simple form relative to the decomposition of \mathscr{H} into G-invariant subspaces.

Second, we study lifting questions. Suppose $a \in \mathscr{L}_G/\mathscr{X}$, where *a* is fixed and has some additional property. Then one may ask if *a* can be lifted to $A \in \mathscr{L}_G$ which is fixed and has the same property. If *a* is self-adjoint, it lifts; if *a* is a projection and *G* is compact, then *a* lifts; if *a* is unitary and *G* is compact, then under the additional hypothesis that $\operatorname{ind}_G(a) = 0$, *a* lifts to a fixed unitary.

Third, we study the topology of the G-Fredholm operators and prove analogs of Atkinson's theorem and Kuiper's theorem in the equivariant case.

The fourth type of result deals with the structure of \mathcal{L}_G as a C^* -algebra. The most striking case is when G is the circle T represented faithfully on $L^2(\mathbf{T}) \otimes l_2$. Then \mathcal{L} is generated as a C^* -algebra by the fixed operators and by one additional operator B, a block bilateral shift. The structure of \mathcal{L}_G is explained for G compact abelian and for G compact. We plan to consider \mathcal{L}_G for G locally compact (abelian) in subsequent work.

It is a pleasure to acknowledge useful conversations and helpful ideas from William Arveson, Takashi Ito, and Jerome Kaminker. Arveson first helped us understand \mathscr{L}_{T} ; Ito provided a key analytic step; Kaminker has been of continuing assistance regarding topological matters. The initial impetus for this paper was to resolve analytic difficulties which arose in the second author's collaboration with Kaminker [9].

Received November 26, 1977. Revision received May 1, 1978. Research supported in part by the National Science Foundation.