COVARIANT REPRESENTATIONS ON THE CALKIN ALGEBRA I

RICHARD LOEBL AND CLAUDE SCHOCHET

0. Suppose \mathscr{H} is a Hilbert space and G is a locally compact group with a strongly continuous unitary representation on \mathscr{H}. Then G acts by conjugation on the bounded operators $\mathscr{L}(\mathscr{H})$ and on the Calkin algebra $\mathscr{L}(\mathscr{H}) / \mathscr{K}(\mathscr{H})$, where $\mathscr{K}=\mathscr{K}(\mathscr{H})$ is the ideal of compact operators. Suppose also that X is a G-space, so that G acts on the continuous functions $C(X)$ by $f_{g}(x)=f\left(g^{-1} x\right)$.

Our intention is to study covariant representations $\tau: C(X) \rightarrow \mathscr{L}(\mathscr{H}) / \mathscr{K}(\mathscr{H})$, where covariance means that $g \cdot \tau(f) \cdot g^{*}=\tau\left(f_{g}\right)$. Examples indicate that the problem should be modified to study covariant representations $\tau: C(X) \rightarrow \mathscr{L}_{G} / \mathscr{K}$ where $\mathscr{L}_{G}=\left\{T \in \mathscr{L}(\mathscr{H}) \mid\right.$ the function $g \leadsto g T g^{*}$ is normcontinuous\}. In this paper we lay the foundations for the study of such representations.

We begin by establishing general properties of \mathscr{L}_{G}. It is a C^{*}-algebra containing the scalars and \mathscr{K}. Further, the operators fixed by the action of G have a particularly simple form relative to the decomposition of \mathscr{H} into G-invariant subspaces.

Second, we study lifting questions. Suppose $a \in \mathscr{L}_{G} / \mathscr{K}$, where a is fixed and has some additional property. Then one may ask if a can be lifted to $A \in \mathscr{L}_{G}$ which is fixed and has the same property. If a is self-adjoint, it lifts; if a is a projection and G is compact, then a lifts; if a is unitary and G is compact, then under the additional hypothesis that $\operatorname{ind}_{G}(a)=0, a$ lifts to a fixed unitary.

Third, we study the topology of the G-Fredholm operators and prove analogs of Atkinson's theorem and Kuiper's theorem in the equivariant case.

The fourth type of result deals with the structure of \mathscr{L}_{G} as a C^{*}-algebra. The most striking case is when G is the circle \mathbf{T} represented faithfully on $L^{2}(\mathbf{T}) \otimes l_{2}$. Then \mathscr{L} is generated as a C^{*}-algebra by the fixed operators and by one additional operator B, a block bilateral shift. The structure of \mathscr{L}_{G} is explained for G compact abelian and for G compact. We plan to consider \mathscr{L}_{G} for G locally compact (abelian) in subsequent work.

It is a pleasure to acknowledge useful conversations and helpful ideas from William Arveson, Takashi Ito, and Jerome Kaminker. Arveson first helped us understand $\mathscr{L}_{\mathbf{r}}$; Ito provided a key analytic step; Kaminker has been of continuing assistance regarding topological matters. The initial impetus for this paper was to resolve analytic difficulties which arose in the second author's collaboration with Kaminker [9].
Received November 26, 1977. Revision received May 1, 1978. Research supported in part by the National Science Foundation.

