BIHOLOMORPHIC MAPS OF WEAKLY PSEUDOCONVEX DOMAINS

ERIC BEDFORD AND JOHN ERIK FORNÆSS

1. Introduction. Boundary regularity of holomorphic mappings between pseudoconvex domains with smooth boundary has been studied by several authors (see [1], [3], [5], [6], [8], [10], and [12] - [18]).

Here we prove the following result.

MAIN THEOREM: Let Ω_1 and Ω_2 be bounded pseudoconvex domains in \mathbb{C}^2 with smooth real analytic boundaries. Then any biholomorphic map $F: \Omega_1 \to \Omega_2$ extends to a homeomorphism $\overline{F}: \overline{\Omega}_1 \to \overline{\Omega}_2$.

The domains Ω_1 and Ω_2 are not assumed to be strongly pseudoconvex.

We use the same general techniques as were used by Vormoor [16], Henkin [8], Pinčuk [13] and Range [15]. Hence the principal difficulty is to estimate the Carathéodory metric of Ω_2 . To do this we use the peak functions obtained in [2]. The Main Theorem then is an immediate corollary of

THEOREM 1. Let M_1 , M_2 be 2-dimensional Stein manifolds, and let $\Omega_1 \subset M_1$, $\Omega_2 \subset M_2$ be relatively compact pseudoconvex domains with \mathscr{C}^2 boundary. If $\partial \Omega_2$ is real analytic, and if $F : \Omega_1 \to \Omega_2$ is a proper holomorphic mapping, then $F \in \operatorname{Lip}^{\epsilon}(\overline{\Omega}_1)$ for some $\epsilon > 0$.

It would be desirable to extend this Theorem to \mathbb{C}^n for n > 2, but our proof does not apply to that case. The principal difficulty is that we do not know how to construct peak functions for each $p \in \partial \Omega_2$.

In Section 2 we estimate the Carathéodory metric at a strongly pseudoconvex boundary point in terms of the distance to the weakly pseudoconvex points. Then in Section 3 we estimate the Carathéodory metric on certain models of weakly pseudoconvex sets, and in Section 4 we obtain global estimates on the metric by combining the results in the previous two sections. The estimates are proved only in \mathbb{C}^2 , but the proofs and results extend to Stein manifolds. Finally, in Section 5, we explain how Theorem 1 is obtained from section 4.

2. Estimate of the Carathéodory metric at a strongly pseudoconvex point. We let $\Omega \subset \mathbb{C}^2$ be a bounded pseudoconvex domain with real analytic boundary, and we define for $z = (z_1, z_2) \in \Omega$ and $\xi = (\xi_1, \xi_2) \in \mathbb{C}^2$,

(2.1)
$$c(z;\xi) = \sup\left\{\left|\sum_{j=1}^{2} \frac{\partial f}{\partial z_{j}}(z)\xi_{j}\right|; f: \Omega \to \mathbb{C} \text{ is holomorphic and } |f| < 1\right\}$$

Received March 10, 1978.