ON THE DISTRIBUTION OF FEKETE POINTS

BJÖRN E. J. DAHLBERG

1. Introduction

Let $E
ightharpoonrightarrow R^n$, $n \ge 3$, be a compact set and N a given positive integer. A system of points $P_1, \dots, P_N \in E$ which minimizes $\sum_{i \ne j} |P_i - P_j|^{2-n}$ is called a system of Fekete points of E. (Notice that this represents a stable equilibrium distribution of N equal point charges on E). The purpose of this note is to find estimates of the distance d from a Fekete point P_i to its closest neighbour P_i^* . Using complex methods, Kövari and Pommerenke [1] found that if $E \subset R^2$ is a sufficiently smooth curve then $C_1 N^{-1} \le d \le C_2 N^{-1}$. In the case when $n \ge 3$ and E is a closed $C^{1,\alpha}$ surface, Sjögren [3] found the estimate $d \le C N^{-\gamma}$, where $\gamma = \frac{1}{2} (n-1)^{-2}$. We can show the following estimate:

THEOREM. Let $S \subset \mathbb{R}^n$, $n \geq 3$, be a closed, compact $C^{1,\alpha}$ -surface, where $0 < \alpha < 1$, that separates \mathbb{R}^n into two components. Then there are positive numbers $C_i = C_i(S)$, i = 1, 2, such that if N is a positive integer and P_1, \dots, P_N is a system of Fekete points of S then

(1.1)
$$C_1 r_N \leq |P_i - P_i^*| \leq C_2 r_N, \ 1 \leq i \leq N,$$

where $r_N = N^{-1/(n-1)}$.

2. The main result

We start by recalling that a $C^{1,\alpha}$ -surface in \mathbb{R}^n is a closed, bounded (n-1)dimensional surface S such that S can be covered by finitely many open right circular cylinders whose bases have a positive distance to S and to each cylinder C there is an orthonormal coordinate system $(x, y), x \in \mathbb{R}^{n-1}, y \in \mathbb{R}$, such that the y-axis is parallel to the axis of symmetry of C and $C \cap S = C \{(x, y): y = \phi(x)\}$, where $\phi: \mathbb{R}^{n-1} \to \mathbb{R}$ is a C¹-function such that $|\nabla \phi(x) - \nabla \phi(z)| \leq M|x-z|^{\alpha}$, where ∇ denotes the gradient.

We shall from now on assume that $S \subset \mathbb{R}^n$, $n \ge 3$, is a $C^{1,\alpha}$ -surface for some α , $0 < \alpha < 1$, such that S separates \mathbb{R}^n into two components D and D_{∞} where D_{∞} denotes the unbounded one. We denote by dS the surface measure element on S and by λ the equilibrium measure of S, i.e., the unique positive measure on S with total mass 1 minimizing

$$\iint |P - Q|^{2-n} d\lambda(P) d\lambda(Q).$$

Received October 15, 1977. Revision received March 14, 1978.