EXTREMAL PSD FORMS WITH FEW TERMS

BRUCE REZNICK

1. Introduction

A psd form is a homogeneous polynomial p for which $p\left(x_{1}, \cdots, x_{n}\right) \geq 0$. Let $P_{n, 2 m}$ denote the convex cone of all psd forms in n variables with degree $2 m$ and $\Sigma_{n, 2 m}$ denote the convex cone of all such forms which can be written as a sum of squares of forms. (It is clear that a sum of squares is psd.)

Hilbert [7] showed in 1888 that $\Sigma_{n, 2 m}=P_{n, 2 m}$ if and only if $(n, 2 m)$ is $(n, 2)$, $(2,2 m)$ or $(3,4)$ and that $\Sigma_{n, 2 m} \subset P_{n, 2 m}$ otherwise. He gave a method for constructing psd forms which are not a sum of squares, but did not carry it out. In fact, no explicit form in $P_{n, 2 m}-\Sigma_{n, 2 m}$ was exhibited until 1967.

Motzkin [9] demonstrated that

$$
M\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{6}+x_{2}^{4} x_{3}^{2}+x_{2}^{2} x_{3}^{4}-3 x_{1}^{2} x_{2}^{2} x_{3}^{2}
$$

is such a form; the simplicity of M contrasts with the complexity of Hilbert's construction. Robinson [11] simplified Hilbert's method and provided several more such fo'ms. Very recently Choi and Lam [1], [2], [3] have looked at $P_{n, 2 m}$ as a cone an 1 searched for extremal elements. They proved that M, a number of Robinson's forms, and

$$
S\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{4} x_{2}^{2}+x_{2}^{4} x_{3}^{2}+x_{1}^{2} x_{3}^{4}-3 x_{1}^{2} x_{2}^{2} x_{3}^{2}
$$

are all extremal psd forms in this sense.
The simplicity of M and S motivate this paper, in which all extremal psd forms with four or fewer terms (which are not sums of squares) will be described.

2. Preliminaries

Identify a form in n variables of degree m with the N-tuple of its coefficients ordered in any predetermined manner, where $N(n, m)=\binom{n+m-1}{n-1}$, and pull back the ordinary topology on \mathbb{R}^{N}. Then $P_{n, 2 m}$ is a closed cone. Ellison [5] has shown that $\Sigma_{n, 2 m}$ is also a closed cone. If f is extremal in $P_{n, 2 m}$ as a cone and $f=g_{1}+g_{2}, g_{i}$ psd, then $g_{i}=\lambda_{i} f$; if f is extremal in $\Sigma_{n, 2 m}$, then f is a perfect square. Let $E_{n, 2 m}$ consists of the extremal forms in $P_{n, 2 m}$ which are not perfect squares. We shall include the condition "not a perfect square" in any further use of the word "extremal". If $h=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}, \Sigma a_{i}=k$, and f is in $E_{n, 2 m}$ then $h^{2} f$ is in $E_{n, 2 m+2 k}$: if $x_{j}^{2 a j}$ divides $g_{1}+g_{2}, g_{i}$ psd, then $x_{j}^{2 a j}$ divides each g_{i}.

Received December 15, 1977. Revision received February 21, 1978.

