EXTREMAL PSD FORMS WITH FEW TERMS

BRUCE REZNICK

1. Introduction

A psd form is a homogeneous polynomial p for which $p(x_1, \dots, x_n) \ge 0$. Let $P_{n,2m}$ denote the convex cone of all psd forms in n variables with degree 2m and $\sum_{n,2m}$ denote the convex cone of all such forms which can be written as a sum of squares of forms. (It is clear that a sum of squares is psd.)

Hilbert [7] showed in 1888 that $\Sigma_{n,2m} = P_{n,2m}$ if and only if (n, 2m) is (n, 2), (2, 2m) or (3, 4) and that $\Sigma_{n,2m} \subset P_{n,2m}$ otherwise. He gave a method for constructing psd forms which are not a sum of squares, but did not carry it out. In fact, no explicit form in $P_{n,2m} - \Sigma_{n,2m}$ was exhibited until 1967.

Motzkin [9] demonstrated that

$$M(x_1, x_2, x_3) = x_1^6 + x_2^4 x_3^2 + x_2^2 x_3^4 - 3x_1^2 x_2^2 x_3^2$$

is such a form; the simplicity of M contrasts with the complexity of Hilbert's construction. Robinson [11] simplified Hilbert's method and provided several more such forms. Very recently Choi and Lam [1], [2], [3] have looked at $P_{n,2m}$ as a cone an 1 searched for extremal elements. They proved that M, a number of Robinso 1's forms, and

$$S(x_1, x_2, x_3) = x_1^4 x_2^2 + x_2^4 x_3^2 + x_1^2 x_3^4 - 3x_1^2 x_2^2 x_3^2$$

are all extremal psd forms in this sense.

The simplicity of M and S motivate this paper, in which all extremal psd forms with four or fewer terms (which are not sums of squares) will be described.

2. Preliminaries

Identify a form in *n* variables of degree *m* with the *N*-tuple of its coefficients ordered in any predetermined manner, where $N(n, m) = \binom{n+m-1}{n-1}$, and pull back the ordinary topology on \mathbb{R}^N . Then $P_{n,2m}$ is a closed cone. Ellison [5] has shown that $\Sigma_{n,2m}$ is also a closed cone. If *f* is extremal in $P_{n,2m}$ as a cone and $f = g_1 + g_2$, g_i psd, then $g_i = \lambda_i f$; if *f* is extremal in $\Sigma_{n,2m}$, then *f* is a perfect square. Let $E_{n,2m}$ consists of the extremal forms in $P_{n,2m}$ which are not perfect squares. We shall include the condition "not a perfect square" in any further use of the word "extremal". If $h = x_{1}^{a_1} \cdots x_{n}^{a_n}$, $\Sigma a_i = k$, and *f* is in $E_{n,2m}$ then $h^2 f$ is in $E_{n,2m+2k}$: if x_j^{2aj} divides $g_1 + g_2$, g_i psd, then x_j^{2aj} divides each g_i .

Received December 15, 1977. Revision received February 21, 1978.