ADDENDUM TO THE ARTICLE "ON THE TORSION IN $K_{*}(\mathbb{Z})$ "

C. SOULÉ

We shall use the notations and references of the article of R. Lee and R. H. Szczarba, which will be referred to as [LS]. (Duke Math. J. 45(1978), 101-129.

1. Theorem 1. The groups $K_{4}(\mathbb{Z})$ and $K_{5}(\mathbb{Z})$ contain no 5 -torsion.

This result is a consequence, via Lemma 1.1 and the exact sequences of Quillen (paragraph 1 and Proposition 5.1), of the following:

Theorem 1'. Modulo 2 and 3-torsion, we have

$$
\begin{gathered}
H_{1}\left(S L_{4}(\mathbb{Z}) \cdot S t_{4}\right)=H_{1}\left(G L_{5}(\mathbb{Z}), S t_{5}\right)=0 . \\
H_{2}\left(S L_{4}(\mathbb{Z}), S t_{4}\right)=0 .
\end{gathered}
$$

2. Lemma. Let n be an integer greater than one. The boundary ∂X_{n}^{*} of X_{n}^{*} has the homotopy type of the Tits' building of the parabolic subgroups of $S L_{n}(\mathbb{Q})$ and X_{n}^{*} is contractible.

Proof. As in [LS], §2, one gives the CW-topology to X_{n}^{*}.
Let $C(W)$ be the set of positive semi-definite real quadratic forms h with kernel generated by W, a subspace of $V=\mathbb{Q}^{n}$, modulo scalars. Following [13], ∂X_{n}^{*} is the (disjoint) union of the $C(W)$'s for all proper non zero subspaces W of V. Furthermore, in ∂X_{n}^{*}, we have $\overline{C(W)}=\coprod_{W^{\prime} \supset W} C\left(W^{\prime}\right)$.

Let T_{n} be (the geometric realisation of) the Tits building of $S L_{n}(\mathbb{Q})$, i.e., the nerve of the set of proper non zero subspaces of V, ordered by inclusion, and let $T_{W} \subset T_{n}$ be the nerve of the set of proper subspaces of V containing W. Clearly T_{W} is homotopically trivial.

The subcomplex $\overline{C(W)}$ of X_{n}^{*} is contractible. To prove this we remark that if A_{0} and A_{1} are two points in C_{n}^{*}, one can choose finitely many cells covering all the segments [A_{0}, A], for A close enough to A_{1} (in the $C W$-topology). We then use the convexity of $\overline{C(W)}$.

Using a barycentric subdivision of X_{n}^{*}, one can see that $\overline{C(W)}$ is an absolute retract, and, similarly to [4], §8, this allows us to construct a map f from ∂X_{n}^{*} to T_{n} such that $f(\overline{C(W)}) \subset T_{W}$ (use an induction process on the codimension of W). We then construct a map $g: T_{n} \rightarrow X_{n}$ such that $g\left(T_{W}\right) \subset \overline{C(W)}$, i.e., $g\left(\left(W_{1} \subset W_{2} \subset \cdots \subset W_{k}\right)\right) \subset \overline{C\left(W_{1}\right)}$, and prove that g is an homotopic inverse for f as in loc. cit. This homotopy equivalence commutes, up to homotopy, to the action of $S L_{n}(\mathbb{Z})$.

