GAMMA FUNCTION IDENTITIES AND ELLIPTIC DIFFERENTIALS ON FERMAT CURVES

NEAL KOBLITZ

§1. Introduction

If C is a nonsingular algebraic curve with linearly independent differentials of the first kind $\omega_1, \dots, \omega_g, g \leq \text{genus } C$, all defined over a field $K \subset \mathbb{C}$, we say $\{\omega_i\}$ is a "genus g set of differentials over K" if

$$\mathscr{L}_{\{\omega_i\}} = \left\{ \int_{\gamma} \omega_1, \cdots, \int_{\gamma} \omega_g \right\}_{\gamma \in H_1(C, \mathbf{Z})} \subset \mathbf{C}^g$$

is a lattice, i.e., discrete of Z-rank 2g. Such a set of differentials gives a map of the jacobian J_C of C onto the g-dimensional abelian variety $A = \mathbf{C}^g / \mathscr{L}_{\{\omega_i\}}$. A is actually defined over K, because its cotangent space and hence its Lie algebra is defined over K ([8]). If g = 1, we call $\omega = \omega_1$ an elliptic differential. In that case $E_{\omega} = \mathbf{C} / \mathscr{L}_{\omega}$ is an elliptic curve.

For N > 2, let $F(N) = \{(X, Y, Z) \in \mathbf{P}^2(\mathbf{C}) | X^N + Y^N = Z^N \}$. A convenient basis of holomorphic differentials on F(N) is

$$\omega_{r,s,t} = X^{Nr-1}Y^{Ns-1} \frac{dX}{Y^{N-1}} (Nr, Ns, Nt \in \mathbb{Z}^+, r+s+t=1).$$

Let $\zeta_N = e^{2\pi i/N}$, $\mathbf{Q}_N = \mathbf{Q}(\zeta_N)$. Let $\langle \rangle$ denote least nonnegative residue mod 1. Let $H_{r.s.t} = \{ u \in (\mathbf{Z}/N\mathbf{Z})^* | \langle ur \rangle + \langle us \rangle + \langle ut \rangle = 1 \}.$

Then $H_{r,s,t}$ is a set of coset representatives for $\{\pm 1\}$ in $(\mathbb{Z}/N\mathbb{Z})^*$. Let [r, s, t] be the equivalence class of triples where $(r, s, t) \sim (\langle ur \rangle, \langle us \rangle, \langle ut \rangle)$ $(u \in H_{r,s,t})$. Then $J_{F(N)}$ is isogenous over \mathbb{Q} to a product of abelian varieties $J_{[r,s,t]}$ (see [7]); in fact, this decomposition of $J_{F(N)}$ is the eigen-space decomposition for the action of $(\mu_N)^3/\mu_N$ on the differentials, corresponding to $X \leftrightarrow \zeta_1 X$, $Y \leftrightarrow \zeta_2 Y$, $Z \leftrightarrow \zeta_3 Z$ on the curve, where $\zeta_i \in \mu_N$ are N-th roots of unity and the diagonal (ζ, ζ, ζ) acts trivially. We also know [9] that, over $\overline{\mathbb{Q}}$, $J_{[r,s,t]}$ is isogenous to a product of w copies of a simple factor of dimension $\varphi(M)/2w$, where

$$M = N/g.c.d.(Nr, Ns, Nt), \quad w = \#\{u \in (\mathbb{Z}/M\mathbb{Z})^* | uH_{r,s,t} = H_{r,s,t}\}.$$

In particular, $J_{[r,s,t]}$ is isogenous over $\overline{\mathbf{Q}}$ to a product of elliptic curves if and only if $H_{r,s,t} \subset (\mathbf{Z}/N\mathbf{Z})^*$ is a subgroup (necessarily of index 2).

In what follows we always assume that (r, s, t) is *primitive*, i.e., g.c.d.(Nr, Ns, Nt) = 1. If (r, s, t) were imprimitive, the $J_{[r,s,t]}$ piece of the jaco-

Received August 26, 1977. Revision received October 28, 1977