ESTIMATES FOR THE BERGMAN AND SZEGÖ PROJECTIONS ON STRONGLY PSEUDO-CONVEX DOMAINS

D. H. PHONG and E. M. STEIN

1. Introduction

Let Ω be a bounded domain in $\mathbb{C}^{n}(n \geq 2)$. The Bergman operator $K: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is the orthogonal projection of $L^{2}(\Omega)$ onto the closed subspace \mathscr{H} of L^{2} holomorphic functions on Ω; it is well-known that it can be represented as an integral operator

$$
\begin{equation*}
K u(z)=\int_{\Omega} K(z, w) u(w) d w, \quad u \in L^{2}(\Omega) \tag{1}
\end{equation*}
$$

whose kernel $K(z, w)$-the Bergman kernel-is for each fixed z an L^{2} function of w so that the above integral is well-defined. Similarly, when $b \Omega$ is smooth, the space \mathscr{H}_{b} of L^{2} boundary values of holomorphic functions is closed in $L^{2}(b \Omega)$, and the orthogonal projection K_{b} on \mathscr{H}_{b}, called the Szegö operator, can also be expressed as an integral operator with a certain kernel $K_{b}(z, w)$, the Szegö kernel:

$$
\begin{equation*}
K_{b} u(z)=\int_{b \Omega} K_{b}(z, w) u(w) d \sigma(w), \quad u \in L^{2}(b \Omega) \tag{2}
\end{equation*}
$$

That K and K_{b} are bounded in L^{2} is of course an immediate consequence of their definitions; however, to study the L^{p} and Hölder boundedness as well as boundedness in Sobolev spaces of higher order requires a rather precise knowledge of the singularities of $K(z, w)$ and $K_{b}(z, w)$ which can be obtained only under extra assumptions on Ω. When Ω is strongly pseudo-convex, a complete description has been given by Fefferman [3] and Boutet de Monvel-Sjöstrand [2]; in this paper we shall use this information to get several kinds of estimates for K and K_{b} in both isotropic and non-isotropic contexts, deduce some properties of holomorphic functions in several variables, and some refinements of estimates of Kohn's solution of $\bar{\partial} u=\psi$. Our results are in part extensions of earlier results and techniques of Stein [11], Folland-Stein [4], Greiner-Stein [6], and Rothschild-Stein [10]. The L^{p} boundedness of the Bergman operator (the case $k=0$, of theorem 2 below) has since been generalized in a different direction, when Ω is the unit ball, by Forelli and Rudin [5]. The Λ_{α} parts of theorems 1 and 3 have also been obtained recently by Ahern and Schneider [1].

