ESTIMATES FOR THE BERGMAN AND SZEGÖ PROJECTIONS ON STRONGLY PSEUDO-CONVEX DOMAINS

D. H. PHONG and E. M. STEIN

1. Introduction

Let Ω be a bounded domain in $\mathbb{C}^n (n \ge 2)$. The Bergman operator $K: L^2(\Omega) \to L^2(\Omega)$ is the orthogonal projection of $L^2(\Omega)$ onto the closed subspace \mathcal{H} of L^2 holomorphic functions on Ω ; it is well-known that it can be represented as an integral operator

$$Ku(z) = \int_{\Omega} K(z, w)u(w)dw, \qquad u \in L^{2}(\Omega)$$
(1)

whose kernel K(z, w)—the Bergman kernel—is for each fixed z an L^2 function of w so that the above integral is well-defined. Similarly, when $b\Omega$ is smooth, the space \mathcal{H}_b of L^2 boundary values of holomorphic functions is closed in $L^2(b\Omega)$, and the orthogonal projection K_b on \mathcal{H}_b , called the Szegö operator, can also be expressed as an integral operator with a certain kernel $K_b(z, w)$, the Szegö kernel:

$$K_b u(z) = \int_{b\Omega} K_b(z, w) u(w) d\sigma(w), \qquad u \in L^2(b\Omega)$$
(2).

That K and K_b are bounded in L^2 is of course an immediate consequence of their definitions; however, to study the L^p and Hölder boundedness as well as boundedness in Sobolev spaces of higher order requires a rather precise knowledge of the singularities of K(z, w) and $K_b(z, w)$ which can be obtained only under extra assumptions on Ω . When Ω is strongly pseudo-convex, a complete description has been given by Fefferman [3] and Boutet de Monvel-Sjöstrand [2]; in this paper we shall use this information to get several kinds of estimates for K and K_b in both isotropic and non-isotropic contexts, deduce some properties of holomorphic functions in several variables, and some refinements of estimates of Kohn's solution of $\bar{\partial}u = \psi$. Our results are in part extensions of earlier results and techniques of Stein [11], Folland-Stein [4], Greiner-Stein [6], and Rothschild-Stein [10]. The L^p boundedness of the Bergman operator (the case k = 0, of theorem 2 below) has since been generalized in a different direction, when Ω is the unit ball, by Forelli and Rudin [5]. The Λ_{α} parts of theorems 1 and 3 have also been obtained recently by Ahern and Schneider [1].

Received March 28, 1977.