NORMAL MAPS, COVERING SPACES, AND QUADRATIC FUNCTIONS

G. W. BRUMFIEL AND R. J. MILGRAM

1. Introduction

1.1. Survey of results

In this paper we investigate the relations between normal maps, covering spaces, and quadratic functions.

If $\pi : M' \to M$ is an *m*-fold covering and M', *M* are closed manifolds, then π can be interpreted as a normal map of degree *m*. Motivated by the theory of degree 1 normal maps, we are led to study relations between quadratic functions defined on an appropriate cohomology group of *M* and quadratic functions defined on the corresponding groups for M'. The theory we develop holds in the generality of coverings $\pi : X' \to X$ of Poincaré duality spaces, and using the transfer $\tau : H^*(X', \mathbb{Z}/2) \to H^*(X, \mathbb{Z}/2)$ we obtain formulas relating these associated quadratic functions.

The theory is applied to two types of problems. First we consider coverings of odd degree. Here τ is surjective and $K = \text{kernel}(\tau)$, which is analogous to a surgery kernel, inherits a canonical quadratic function $\tilde{q} : K \to \mathbb{Z}/2$. If $X' \to X$ is a principal G-bundle, |G| odd, we prove that the Arf invariant of (K, \tilde{q}) is $\chi(X)$ if $|G| \equiv 3$, 5(8) and 0 otherwise, where $\chi(X)$ is the (mod 2) Euler characteristic of X.

Second, if $X' \to X$ is a double cover, we construct canonical quadratic functions $\tilde{q} : H^*(X') \to Q/\mathbb{Z}$. If X is 2n dimensional, $H^*(X')$ means $H^n(X', \mathbb{Z}/2)$, while if X is 4n - 1 dimensional $H^*(X')$ is the torsion subgroup, $T^{2n}(X') \subset H^{2n}(X', \mathbb{Z})$. In the 2n-dimensional case $A[H^n(X', \mathbb{Z}/2), \tilde{q}]$ is an obstruction to a certain transversality problem for P.D. spaces. In the 4n - 1dimensional case our results extend the surgery product formulas of [16], [17] to P.D. spaces.

Since the first version of the present paper appeared, there have been additional applications.

First 1. Hambleton and Milgram [22] have constructed free involutions s on spaces homotopy equivalent to $S^2 \times S^2$, $S^3 \times S^3$ with

$$A[H^n(S^n \times S^n, \mathbb{Z}/2, \tilde{q}] \neq 0,$$

and on taking products with CP^{2m} further examples in all even dimensions. In these examples the orbit spaces X = X'/s are thus Poincaré duality spaces such that the map $f: X \to RP^{N_s}$ classifying the covering

Received February 14, 1977