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p-ADIC HYPERGEOMETRIC FUNCTIONS AND THEIR
COHOMOLOGY

S. SPERBER

O. Introduction
The present work is a generalization to higher dimensions of some recent

work of Dwork [11]. In [11], Dwork shows that the same essential techniques
used earlier [5] to construct a p-adic cohomology theory for hypersurfaces may
also be used to associate cohomology spaces to the p-adic Bessel function. The
eigenvalues of the Frobenius action on cohomology are related [5] to exponen-
tial sums over finite fields basically by Dwork’s trace formula [4], the starting
point for his p-adic study of the zeta-function. Let us fix notation. For any
Laurent-polynomial, g(t) lFq[tl,...tn, (tl’’’ tn)-l], denote by Sm(g) the
following exponential sum

Sm(g) ’ exp (27rip Trmg(t))
where Trm :IFqm IFao (p char IF) is the absolute trace and the sum runs
over all n-tuples, (h, t,)e (IF,*)". Denote by L(g, s) the associated L-
series

L (g, s) exp ( m=l Sm(g) Sm

This L-function is rational and may be written

Irl (1 s ri)
L(g, s) i=

i=1

or equivalently

Sin(g) (.Olm + + (.Or,m --Olm "Orm

In the case of the Bessel function, the exponential sum in question is the Kloos-
terman sum, Sm(fa(1)), where c IFq, fa() is the Laurent polynomial,
fa(1)(t) + (a/t), and L(fa(), s)(-1)n/1 is a quadratic polynomial whose recip-
rocal roots {3ti} are the eigenvalues of Frobenius acting on the Dwork co-
homology space. In [21], Weil derives from his result, the Riemann hypothesis
for curves, sharp estimates for the complex size of the Kloosterman sum. In
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