MORAVA STABILIZER ALGEBRAS AND THE LOCALIZATION OF NOVIKOV'S E_2 -TERM

HAYNES R. MILLER AND DOUGLAS C. RAVENEL

The E_2 -term of the Adams-Novikov spectral sequence [2] for a spectrum X localized at the prime p has the form

$$\operatorname{Ext}_{BP*BP}^{*}(BP_{*}, M) \tag{0.1}$$

where BP is the Brown-Peterson spectrum [2] at p and M is the " BP_*BP comodule" [1] $BP_*(X)$. Recall [2] that $BP_* = \pi_*(BP) = \mathbb{Z}_{(p)}[v_1, v_2, \cdots],$ $|v_i| = 2p^i - 2$. The purpose of this paper is to identify (0.1) with an Ext group over a smaller "Hopf algebra" in case M is v_n -local, by which we mean that v_n acts on M bijectively.

The first theorem in this direction is due to Jack Morava [14]. Morava shows that if M is a v_n -local comodule which is killed by the ideal $I_n = (p, v_1, \dots, v_{n-1})$ and finitely generated over $v_n^{-1}BP_*/I_n$, then (0.1) may be computed in terms of the continuous cohomology of a certain p-adic Lie group with coefficients in a finite dimensional representation over \mathbf{F}_{p^n} constructed out of M.

We prove the following "covariant" analogue of this theorem in Section 2. Let $K(0)_* = \mathbf{Q}$, and $K(n)_* = \mathbf{F}_p[v_n, v_n^{-1}]$ for n > 0, with the obvious BP_* algebra structures. Let $K(n)_*K(n) = K(n)_* \bigotimes_{BP_*} BP_*BP \bigotimes_{BP_*} K(n)_*$; it inherits from BP_*BP the structure of a Hopf algebra over the graded field $K(n)_*$.

THEOREM 2.10. If M is v_n -local and $I_nM = 0$, then

 $\operatorname{Ext}_{BP*BP}^{*}(BP_{*}, M) \cong \operatorname{Ext}_{K(n)*K(n)}^{*}(K(n)_{*}, K(n)_{*} \bigotimes_{BP*} M)$

under the natural map.

In Section 3 we strengthen Theorem 2.10 by dropping the requirement that $I_n M = 0$. Let $E(n)_* = \mathbf{Z}_{(p)}[v_1, \cdots, v_n, v_n^{-1}]$ with the obvious BP_* -algebra structure, and let $E(n)_* E(n) = E(n)_* \bigotimes_{BP^*} BP_* BP \bigotimes_{BP^*} E(n)_*$. Then we have

THEOREM 3.10. If M is v_n -local, then

$$\operatorname{Ext}_{BP*BP}^{*}(BP_{*}, M) \cong \operatorname{Ext}_{E(n)*E(n)}^{*}(E(n)_{*}, E(n)_{*}\otimes_{BP*} M)$$

under the natural map.

Thus higher generators can be neglected, at the cost of introducing a rather complicated set of relations into BP_*BP .

Received December 18, 1976.