TOEPLITZ OPERATORS WITH SEMI-ALMOST PERIODIC SYMBOLS

DONALD SARASON

The present note concerns the Fredholm theory of Toeplitz operators on H^2 of the upper half-plane whose symbols lie in the algebra generated by AP (the space of Bohr almost periodic functions on **R**) and PC_{∞} (the space of continuous functions on **R** that have finite limits at $+\infty$ and at $-\infty$). We denote the above algebra by SAP. The analysis below carries further the analyses by Coburn and Douglas [4], Douglas [5], [7], and Gohberg and Feldman [10] of Toeplitz operators whose symbols lie in AP and in the algebra generated by AP and $C = \{u \in PC_{\infty} : u(+\infty) = u(-\infty)\}.$

Some definitions are needed before results can be stated. We denote the L° space of Lebesgue measure on **R** by L° . For f in L° , the Toeplitz operator on H^2 induced by f will be denoted by T_f .

For f and g in L^{∞} we let

If f and g are in AP, the above three quantities all equal $||f - g||_{\infty}$.

We fix a function u_+ in PC_{∞} which has values in [0, 1] and satisfies $u_+(+\infty) = 1$ and $u_+(-\infty) = 0$, and we let $u_- = 1 - u_+$. It is easily seen that each function f in SAP can be written uniquely as $f = u_+f_+ + u_-f_- + f_0$, where f_+ and $f_$ are in AP and f_0 is in C_0 (the space of functions in C that vanish at ∞). We have dist_{+ ∞} $(f, f_+) = 0 = \text{dist}_{-\infty} (f, f_-)$. If $(f_n)_{n=1}^{\infty}$ is a uniformly convergent sequence in SAP with limit f, then we see from the above that the sequences $((f_n)_+)_{n=1}^{\infty}$ and $((f_n)_-)_{n=1}^{\infty}$ are uniformly convergent, say to f_+ and f_- . The latter functions belong to AP, and $f - u_+f_+ - u_-f_-$ is clearly in C_0 , so that f is in SAP. Thus, SAP is uniformly closed and so is a C^* -algebra. In particular, a function in SAP is invertible if and only if it is bounded away from 0.

The following easily verified observation is recorded for future reference.

LEMMA 0. The maps $f \to f_+$ and $f \to f_-$ are *-homomorphisms of SAP onto AP. For f in AP we let M(f) denote the Bohr mean value of f [1]. Thus, for fReceived November 1, 1976. Revision received January 31, 1977.