ON NORM MAPS FOR ONE DIMENSIONAL FORMAL GROUPS III

MICHIEL HAZEWINKEL

1. Introduction

The main purpose of the present note is to give a more elementary and conceptual and less computational proof of the main theorem of [4]. At the same time we generalize the theorem.

Let K be a local field, L/K a finite galois extension. Let A be the ring of integers of K and F(X, Y) a (commutative one dimensional) formal group (law) over A, i.e. F(X, Y) is a formal power series in two variables over A of the form $F(X, Y) = X + Y + \sum_{i,i\geq 1} a_{ii}X^iY^i$ such that $a_{ii} = a_{ii}$ and F(F(X, Y), Z) = F(X, F(Y, Z)). Let \mathfrak{m}_L be the maximal ideal of A(L), the ring of integers of L. The group recipe F(X, Y) can be used to define a new abelian group structure on the set \mathfrak{m}_L , viz. $x + {}_F y = F(x, y)$ where $x, y \in \mathfrak{m}_L$. This group is denoted F(L). There is a natural norm map

(1.1.)
$$F - \operatorname{Norm}_{L/K} : F(L) \to F(K), \qquad x \mapsto \sigma_1 x +_F \sigma_2 x +_F + \cdots +_F \sigma_n x$$

where $\{\sigma_1, \cdots, \sigma_n\} = \text{Gal}(L/K)$. The general problem is to describe the image (or the cokernel) of the maps $F - \text{Norm}_{L/K}$. For example if F is the multiplicative group $\hat{\mathbf{G}}_m(X, Y) = X + Y + XY$, then F - Norm becomes the ordinary norm map

$$(1.2) N_{L/K}: U^1(L) \to U^1(K)$$

where $U^{1}(L) = \{x \in U(L) = A(L)^{*} \mid x \equiv 1 \mod \mathfrak{m}_{L}\}$. The study of Coker $N_{L/K}$ is what a not inconsiderable part of local class field theory is about.

Let K_{∞}/K be an infinite galois extension of Galois group isomorphic to \mathbf{Z}_{p} , the *p*-adic integers. Such an extension is called a \mathbf{Z}_{p} -extension or a Γ -extension. Let K_{n} be the invariant field of the closed subgroup $p^{n}\mathbf{Z}_{p}$, $n = 0, 1, 2, \cdots$, where we write $K_{0} = K$.

The abelian group F(K) carries a natural filtration $F(K) = F^1(K) \supset F^2(K) \supset \cdots \supset F^n(K) \supset \cdots$ where $F^n(K) = \{x \in F(K) \mid x \in \mathfrak{m}_K^n\}$.

We write $F - \operatorname{Norm}_{n/0}$ for $F - \operatorname{Norm}_{K_n/K}$. The main theorem of this paper is now.

1.3. THEOREM. Let K_{∞}/K be a totally ramified \mathbf{Z}_{p} -extension of an absolutely unramified mixed characteristic local field K with perfect residue field k of characteristic p > 2. Let F(X, Y) be a formal group over A of height $h \ge 2$. Then we

Received December 9, 1975. Revision received October 7, 1976.