FACTORIZATION THEOREMS FOR FUNCTIONS IN THE BERGMAN SPACES

CHARLES HOROWITZ

1. For $0 and <math>0 \le \alpha < \infty$, we consider the Bergman spaces $A^{p,\alpha}$ of functions analytic in the unit disc U of C and satisfying

$$||f||_{p,\alpha}^{p} = \iint_{U} |f(z)|^{p} (1 - |z|^{2})^{\alpha} (dA(z) < \infty,$$

where dA denotes the normalized Lebesgue measure $(1/\pi) dxdy$. The spaces $A^{p,0}$ are denoted simply A^{p} .

In the present paper, we discuss factorization properties of functions in these spaces. Our first main result is the following:

THEOREM 1. Let p and α be fixed, and let $n \geq 2$ be an integer. Then there is a constant C depending only on p, α , and n, such that if $f \in A^{\nu,\alpha}$ there exist functions $f_1 \cdots f_n \in A^{\nu,\alpha}$ with

 $f = \prod_{i=1}^{n} f_i$

and

$$\prod_{i=1}^{n} ||f_{i}||_{pn,\alpha} \leq C ||f||_{p,\alpha} .$$

Theorem 1 has a somewhat interesting history. The analogous theorem for H^p spaces over U in place of $A^{p,a}$ is classical. Rudin [9] showed that this result does not generalize to H^p spaces over a polydisc, at least in dimensions greater than 3. Somewhat later, Miles [7] and Rosay [8] extended Rudin's counterexample to dimensions 2 and 3. Interest in the present problem arose partly because of connections between A^p spaces and H^p spaces in several variables. Indeed, in view of the theorem in [5], a negative result in place of Theorem 1 would have reproved the result of Rudin, Miles and Rosay. In the other direction, recent work of Coifman, Rochberg, and Weiss [2] on H^p spaces in several variables has yielded as a corollary a weaker version of Theorem 1.

Our second main theorem deals with division by Blaschke products, which products we define here mainly for purposes of fixing notation. For $a \in U$, we define first the Möbius transformations

(1.1)
$$C_a(z) = \frac{a-z}{1-\bar{a}z}$$

Received November 2, 1976. This research was partially supported by a grant from the National Science Foundation at the University of Wisconsin.