ON A CERTAIN CLASS OF FUCHSIAN PARTIAL DIFFERENTIAL EQUATIONS

VICTOR GUILLEMIN AND DAVID SCHAEFFER

Contents

§1.	Introduction	159
§ 2.	Contact transformations and contact vector fields	160
§ 3.	A linearization theorem	165
§4 .	Canonical forms	169
§5.	Eigenvalues of symplectic mappings	178
§ 6.	On the propagation of singularities (I)	185
§7.	On the propagation of singularities (II)	192

§1. Introduction.

Let X be an n dimensional manifold and $P : C^{\infty}(X) \to C^{\infty}(X)$ a pseudodifferential operator with real principal symbol. Let H_p be the Hamiltonian vector field

(1.1)
$$H_{\nu} = \sum \frac{\partial p}{\partial \xi_i} \frac{\partial}{\partial x_i} - \frac{\partial p}{\partial x_i} \frac{\partial}{\partial \xi_i}.$$

Hörmander and Duistermaat have shown that if H_p isn't parallel to the radial vector field

(1.2)
$$\Xi = \sum \xi_i \frac{\partial}{\partial \xi_i}$$

at the point (x, ξ) then in a neighborhood of (x, ξ) , P can be conjugated by a Fourier integral operator to the simple form

$$-i\frac{\partial}{\partial x_n}$$
 where $i = \sqrt{1}$.

Using this theorem they are able to prove the following two results about the homogeneous equation Pu = 0. 1) If u is a solution of this equation and $(x, \xi) \in WF(u)$ then the bicharacteristic through (x, ξ) is in WF(u). 2) There exist solutions of this equation, at least locally, with singularities concentrated along single bicharacteristics.

In this paper we obtain some analogous results for the case when H_p is parallel to the radial field at (x_0, ξ_0) . Such a point will be called a radial point. If

Received September 16, 1976. Partially supported by NSF contracts MPS7405913 and MCS7523334.