ASYMPTOTIC BEHAVIOUR OF MATRIX COEFFICIENTS OF THE DISCRETE SERIES

DRAGAN MILIČIĆ

Introduction. Let G be a connected semisimple Lie group with finite center. The set of equivalence classes of square-integrable representations of G is called the discrete series of G. The discrete series play a crucial role in the representation theory of G, as can be seen from Harish-Chandra's work on the Plancherel formula [8].

In the following we suppose that G has nonempty discrete series. Therefore, by a result of Harish-Chandra, G has a compact Cartan subgroup H. Let K be a maximal compact subgroup of G containing H. The K-finite matrix coefficients of discrete series representations are analytic square-integrable functions on G. Moreover, Harish-Chandra has shown that they decay rapidly at infinity on the group. For various questions of harmonic analysis on G it is useful to have a better knowledge of their rate of decay. This problem was studied by P. C. Trombi and V. S. Varadarajan [16]. They have found a simple necessary condition on a discrete series representation having the K-finite matrix coefficients with certain rate of decay. Our main result is that their condition is sufficient too. In turn, this gives a precise characterization of discrete series representations whose K-finite matrix coefficients lie in $L^{p}(G)$ for $1 \leq p<2$.

To describe this result we must recall Harish-Chandra's parametrisation of the discrete series representations. Let $\mathfrak{g}_{0}, \mathfrak{f}_{0}$ and \mathfrak{h}_{0} be the Lie algebras of G, K and H, and $\mathfrak{g}, \mathfrak{f}$ and \mathfrak{h} their complexifications, respectively. Denote by Φ the root system of $(\mathfrak{g}, \mathfrak{h})$. A root $\alpha \in \Phi$ is called compact if its root subspace is contained in \mathfrak{f} and noncompact otherwise. Let W be the Weyl group of ($\mathfrak{g}, \mathfrak{h}$) and W_{k} its subgroup generated by the reflections with respect to the compact roots. The Killing form of \mathfrak{g} induces an inner product (\mid) on $i \mathfrak{F}_{0}{ }^{*}$, the space of all linear forms on \mathfrak{h} which assume imaginary values of \mathfrak{h}_{0}. An element λ of $i \mathfrak{h}_{0}{ }^{*}$ is singular if it is orthogonal to at least one root in Φ, and nonsingular otherwise. The differentials of the characters of H form a lattice Λ in $\mathrm{ih}_{0}{ }^{*}$. Let ρ be the half-sum of positive roots in Φ, with respect to some ordering on $i \mathfrak{h}_{0}{ }^{*}$. Then $\Lambda+\rho$ does not depend on the choice of this ordering.

Harish-Chandra has shown that to each nonsingular $\lambda \in \Lambda+\rho$ we can attach a class π_{λ} of discrete series representations, π_{λ} is equal to π_{μ} if and only if λ and μ are conjugate under W_{k} and the discrete series are exhausted in this way [8].

Roughly speaking, our result shows that the rate of decay of K-finite matrix
Received October 7, 1976. Supported in part by NSF grant MPS72-0.50.55 A03 and SIZ VI SRH.

