ON THE L^p NORMS OF STOCHASTIC INTEGRALS AND OTHER MARTINGALES

BURGESS DAVIS

1. Introduction. Let X_t , $0 \le t < \infty$, be standard Brownian motion. It has recently been proved that there exist absolute positive constants A_p , $0 , and <math>a_p$, $1 , such that if T is stopping time for <math>X_t$ then

(1.1)
$$E |X_T|^p \le A_p E T^{p/2}, \quad 0$$

and

(1.2)
$$a_p E T^{\nu/2} \leq E |X_T|^p$$
, if $1 and $E T^{\nu/2} < \infty$.$

For the exponents p > 1 these inequalities are due to D. L. Burkholder in [4] and P. W. Millar in [11]. Inequality (1.2) was extended to the exponents 0 independently by Burkholder and R. F. Gundy in [6] and A. A. Novikov in [13]. The paper [5] is a good general source of information about these and related results.

Here a proof of (1.1) and (1.2) is given which yields the best possible values for the constants a_p and A_p . For p = 2n, n an integer, they are respectively z_{2n}^{*2n} and z_{2n}^{2n} , where z_{2n}^* and z_{2n} are the smallest and largest positive zeros of the Hermite polynomial of order 2n. For p = 4 this has already been proved by Novikov in [14], and it is well known that the best values for a_2 and A_2 are 1. Bounds for a_p and A_p may be found in [5], [6], [8], [14], and [16]. The constants found here will be shown to be best possible in inequalities related to (1.1) and (1.2) involving stochastic integrals, stopped random walk, and Haar series.

For example, let φ_1 , φ_2 , \cdots be the complete orthonormal system of Haar functions on the Lebesgue unit interval. Let λ_1 , λ_2 , \cdots be real numbers, such that $\sum_{i=1}^{\infty} \lambda_i \varphi_i$ converges. Let $f = \sum_{i=1}^{\infty} \lambda_i \varphi_i$ and $S(f) = (\sum_{i=1}^{\infty} (\lambda_i \varphi_i)^2)^{1/2}$. Then there are constants d_p and D_p such that

(1.3)
$$\int_0^1 |f|^p \, dx \leq D_p \int_0^1 S(f)^p \, dx, \qquad 0$$

and

(1.4)
$$d_p \int_0^1 |f|^p dx \le \int_0^1 S(f)^p dx$$
, if $1 and $\int_0^1 S(f)^p dx < \infty$.$

For the exponents p > 1 these inequalities are due to R. E. A. C. Paley [12], who proved an equivalent Walsh series form. Marcinkiewicz [9] noted the

Received January 30, 1976. Revision received May 19, 1976. Author supported by a National Science Foundation Grant.