CORRECTION

To: Allan L. Edmonds, Stable existence of finite group actions on manifolds, 41 (1974), 349-352.

John P. Alexander has pointed out that the theorem stated in my note [2] is false without considerably more restrictive hypotheses. In particular one can show that any \mathbf{Z}_{p} action on a finite complex homotopy equivalent to

$$
\mathbf{H P}^{2} \# \mathbf{H P}^{2} \# S^{3} \times S^{5} \# S^{3} \times S^{5}, \quad p \equiv 3(\bmod 4)
$$

must have a fixed point. Sce [1].
The fault lies with Proposition 2. Proposition 1, its corollary, and Proposition 3 are true as stated. The outlined proof of Proposition 2, however, requires some stringent extra hypotheses on the space Y and the chain complex D_{*}. For example, it suffices to assume in addition that X is a finite $(n-2)$-connected, n-dimensional CW complex ($n \geq 3$)-up to homotopy a wedge of ($n-1$)spheres with some n-cells attached-and that the chain complex D_{*} is also n-dimensional. Then one knows that $\pi_{k}(X) \rightarrow H_{k}(X)$ is an isomorphism for $k<n$ and an epimorphism for $k=n$. This information is needed in order to construct the CW complex Y equivariantly and simultaneously extend the map f.

The point of [2] was to attempt to replace a given finite complex by a homotopically equivalent finite complex which supports a free \mathbf{Z}_{p} action. The results of [2] together with the above remarks then show that a finite ($n-2$)-connected, n-dimensional $C W$ complex $(n \geq 3)$ with Euler characteristic zero and no p-torsion in its homology is homotopically equivalent to a finite $C W$ complex with a free \mathbf{Z}_{p} action.

Then the theorem given in [2] holds as stated for manifolds (generally having boundary, however) which in addition have the homotopy type of an ($n-2$)connected, n-dimensional CW complex.

Received January 19, 1976.

Reflerences

1. J. P. Alexander and G. C. Hamrick, Periodic maps on Poincaré duality spaces, preprint.
2. $\Lambda . L$ L. Edmonds, Stable existence of finite group actions on manifolds, Duke Math. J. 41 (1974), 349-352.

Department of Mathem.titics, Cornell University, Ithaca, New York 14853

