THE COHOMOLOGY OF CERTAIN SPECTRA ASSOCIATED WITH THE BROWN-PETERSON SPECTRUM

KATHLEEN SINKINSON

0 . Introduction.

For a fixed prime $p, \mathrm{~W}$. Stephen Wilson has defined a sequence of extraordinary cohomology theories $B P\langle n\rangle^{*}(), n=0,1,2, \cdots \infty[12] . \quad B P\langle 0\rangle^{*}(X)$ $=H^{*}\left(X ; Z_{(p)}\right) . \quad B P\langle 1\rangle^{*}(X)$ is a summand of the complex connective K-theory of X localized at $p . \quad B P\langle\infty\rangle^{*}(X)=B P^{*}(X)$ is the Brown-Peterson cohomology of X. Let $B P\langle n\rangle=\left\{B P\langle n\rangle_{k}\right\}$ be an omega spectrum representing the cohomology theory $B P\langle n\rangle^{*}()$: for a finite complex $X, B P\langle n\rangle^{k}(X) \cong\left[X, B P\langle n\rangle_{k}\right]$. We adopt the convention that $H^{*} X=H^{*}\left(X ; Z_{p}\right)\left(Z_{p}\right.$ denotes the integers $\bmod p)$. Let a be the $\bmod p$ Steenrod algebra and Q_{i} the Milnor elements [3]. W. Stephen Wilson [12] proved that $H^{*} B P\langle n\rangle \cong \mathbb{Q} / \mathbb{Q}\left(Q_{0}, Q_{1}, \cdots Q_{n}\right)$. The object of the paper is to compute the $\bmod p$ cohomology of the spaces $B P\langle n\rangle_{k}$. Our result is:

Theorem.

$$
H^{*} B P\langle n\rangle_{2 k}=Z_{p}[v b(I, J)] \otimes F\left[\overline{M_{s(n, k-1)}^{n}}\right]
$$

and

$$
H^{*} B P\langle n\rangle_{2 k+1}=\Lambda[\sigma v b(I, J)] \otimes F\left[M_{s-1}^{n}\right] \otimes \Lambda\left[\frac{\left.\left(M_{s}^{n}\right)^{+} \cap \phi\left(M^{n-1}\right)_{s}\right)^{-}}{\phi\left(M_{s}^{n}\right)^{+}}\right]
$$

The algebra generators $v b(I, J)$ satisfy the technical requirement that $v b(I, J)$ be (n, k)-allowable. $F[M]$ is the free commutative algebra on the graded vector space M. We defer the technical description of the modules $M_{s}{ }^{n}$ and of the polynomial and exterior algebra generators until Section 2.

Our proof is by double induction on (n, k) which exploits the antecedents of this theorem. Cartan's computation of $H^{*} K(Z, k)$ [1] provides the ($0, k$) case of the theorem and begins the induction in the first coordinate. Ravenel and Wilson [6] have computed the homology of the Brown-Peterson omega spectrum spaces $B P\langle\infty\rangle_{k}$. By Wilson's Splitting theorem [12], this yields a calculation of $H^{*} B P\langle n+1\rangle_{2 k}$ for low k. This gives a starting point for the induction in k for a fixed $n+1$. Two other antecedents-the $n=1$ case of the theorem-remain. Stong [10] computed the mod 2 cohomology of the spectra associated with $B O$ and $B U$. Stong's results served as a guide to William Singer [8] who computed the mod p cohomology of the connective coverings of $B U$ and

Received December 10, 1975. Revision received May 29, 1976.

