REMARKS ON CURVATURE ESTIMATES FOR MINIMAL HYPERSURFACES

LEON SIMON

In [6] curvature estimates (both pointwise and integral estimates) were obtained for stable minimal hypersurfaces immersed in a Riemannian manifold. In particular, a pointwise estimate was established for boundaries of least area contained in \mathbb{R}^{n+1} for $n \leq 5$.

Here (Theorem 1) we wish to point out that such a pointwise estimate can be obtained by a very simple argument, based on standard regularity theory for minimal hypersurfaces, in case $n \leq 6$. The result also holds for n = 7 in the non-parametric case, when the hypersurface is the graph of some solution uof the minimal surface equation. That the result cannot hold for n > 7 follows from [3] (See remark 3 below).

We also here show (Theorem 2) that for a given non-parametric minimal hypersurface $x_{n+1} = u(x_1, \dots, x_n)$, with $n \ge 2$ arbitrary, there is an interesting necessary and sufficient condition for the existence of a curvature bound, involving a Harnack inequality for $(1 + u_x^2)^{\frac{1}{2}} (u_x = (u_{x_1}, \dots, u_{x_n}) = \text{gradient } u)$.

By combining Theorems 1 and 2 we thus establish a Harnack inequality for $(1 + u_x^2)^{\frac{1}{2}}$ for any solution u of the minimal surface equation in the case $n \leq 7$. (See Theorem 3.)

We use the following notation:

$$egin{aligned} B_{
ho} &= \{x \in \mathbf{R}^{n+1} : |x| <
ho\} \ D_{
ho} &= \{x \in \mathbf{R}^n : |x| <
ho\} \ \omega_n &= ext{ volume of } D_1 \end{aligned}$$

 H_n denotes *n*-dimension Hausdorff measure in \mathbb{R}^{n+1}

 \mathfrak{O} will denote the collection of all open sets

 $U \subset \mathbf{R}^{n+1}$ having the property

$$0 \in \partial U \cap B_1 = \partial \overline{U} \cap B_1.$$

Notice that if $U \in \mathfrak{O}$ and $\partial U \cap B_1$ is smooth, then (in B_1) it makes sense to speak of the outward unit normal to U, so that all smooth elements of \mathfrak{O} have naturally oriented boundaries in B_1 .

 \mathfrak{U} will denote the collection of $U \in \mathfrak{O}$ such that $\partial U \cap B_1$ is C^2 and such that ∂U has least area in B_1 in the sense that

Received December 26, 1975. Revision received April 27, 1976. Research partly supported by NSF Grant MPS72-04967A02.