ON OPERATORS WITH THE DOUBLE COMMUTANT PROPERTY

JAMES A. DEDDENS AND WARREN R. WOGEN

Let $\mathfrak{L}(\mathfrak{M})$ denote the algebra of all bounded linear operators on a complex Hilbert space \mathfrak{M} . For $\mathfrak{S} \subset \mathfrak{L}(\mathfrak{M})$, let \mathfrak{S}' denote its commutant, that is, $\mathfrak{S}' =$ $\{A \in \mathfrak{L}(\mathfrak{M}) : AS = SA \text{ for all } S \in \mathfrak{S}\}$, and $\mathfrak{S}'' = (\mathfrak{S}')'$ its double commutant. Then clearly $\mathfrak{S} \subset \mathfrak{S}''$. If \mathfrak{K} is finite dimensional and \mathfrak{G} is any subalgebra of $\mathfrak{L}(\mathfrak{K})$, then a classical theorem in linear algebra says that $\mathfrak{G} = \mathfrak{G}''$. If \mathfrak{K} is infinite dimensional and \mathfrak{G} is a weakly closed *-algebra, then the von Neumann double commutant theorem says that $\mathfrak{G} = \mathfrak{G}''$. In general, $\mathfrak{G} \neq \mathfrak{G}''$ if \mathfrak{G} is an unstarred algebra.

For $S \subset \mathfrak{L}(\mathfrak{K})$ let $\mathfrak{a}(S)$ denote the weakly closed algebra generated by S and the identity I. We say that $T \in \mathfrak{L}(\mathfrak{K})$ has the double commutant property (DCP) provided $\alpha(T) = \{T\}^{\prime\prime}$. Turner [13] has shown that algebraic operators (T is algebraic if p(T) = 0 for some polynomial p) have the DCP. Recently Bonsall and Rosenthal [2, Cor. 7.4] have shown that certain square roots of self-adjoint operators have the DCP. In Theorem 1 of this paper we generalize both of these results by proving that T has the DCP provided f(T) is normal and has the DCP, where f is a function analytic in a neighborhood of $\sigma(T)$ and nonconstant on components. Recall that $\sigma(T)$ denotes the spectrum of T, and that for any compact set $K \subset \mathbf{C}$, $K^{\hat{}}$ denotes its polynomial convex hull; that is, $K^{\hat{}} = K \cup \{\text{the bounded components of the complement of } K\}$. In this situation Theorem 2 describes $\{T\}''$ in terms of T and $\{f(T)\}''$. An essential step in the proofs of Theorems 1 and 2 is Lemma 3, a result due to Gilfeather. This lemma describes the structure of T provided f(T) is normal. Finally, we give some examples and consider a slight modification of the double commutant property.

We begin by stating two results which appear in [12]. The proof of the first result follows from a theorem of Sarason [9], while the proof of the second result is straightforward.

LEMMA 1. A normal operator N has the DCP if and only if every subspace invariant for N also reduces N.

LEMMA 2. Suppose $T = \sum_{n=0}^{\infty} \bigoplus T_n \in \mathfrak{L}(\sum_{n=0}^{\infty} \bigoplus \mathfrak{K}_n)$. If $\mathfrak{A}(T) = \sum_{n=0}^{\infty} \bigoplus \mathfrak{A}(T_n)$ and each T_n has the DCP, then T has the DCP.

The following lemma is due to Gilfeather [5, Th 3.1]. We include a proof for completeness.

Received October 1, 1975.