A GENERALIZATION OF DIRICHLET'S CLASS NUMBER FORMULA

LARRY JOEL GOLDSTEIN AND MICHAEL RAZAR

CONTENTS

349
350
351
351
357

1. Introduction.

In [3], we studied various generalizations of the function $\log \eta(z)$, where $\eta(z)$ is Dedekind's η -function. We called these functions *Hecke integrals*. Among our examples of Hecke integrals was the function $f_{\chi}(z)$ which is defined as follows: Let χ be an odd, primitive, Dirichlet character of conductor \mathfrak{b} , and let **H** denote the complex upper half-plane. Then we set

$$f_{\chi}(z) = \sum_{n=1}^{\infty} \left(\chi(n) \sum_{d\mid n} \frac{\bar{\chi}^2(d)}{d} \right) e^{2\pi i n z/5},$$

where $\bar{\chi}$ denotes the complex conjugate character of χ . We showed in [3] that $f_{\chi}(z)$ satisfies the functional equations

$$f_{\chi}(z + \mathfrak{b}) = f_{\chi}(z) \tag{1.1}$$

norro

$$f_{\chi}\left(-\frac{1}{z}\right) = -f_{\chi}(z) + \frac{i\mathfrak{b}}{\pi\tau(\tilde{\chi})} L(1,\tilde{\chi})^{2}$$
(1.2)

where $L(s, \chi)$ is the usual Dirichlet L-series and $\tau(\chi)$ denotes the Gaussian sum attached to χ .

We discussed in [3] the relationship between the problem of estimating $f_x(i)$ and that of determining all imaginary quadratic fields having a given class number. In this paper, we discuss another connection of the function $f_x(z)$ with the arithmetic of imaginary quadratic fields.

It is clear from (1.1) and (1.2) that if $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ belongs to the subgroup $G(\mathfrak{b})$ of $SL(2, \mathbf{R})$ generated by

$$\pm \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$$
 and $\pm \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$,

Received August 28, 1975. Revision received November 29, 1975.